Skip to content

yccyenchicheng/pytorch-VideoVAE

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

VideoVAE

A pytorch implementation of VideoVAE: https://arxiv.org/pdf/1803.08085.pdf

Requirement

  • OS: Ubuntu 16.04
  • Packages: torch, torchvision, numpy, opencv, matplotlib, tensorflow (for tensorboard)

Prepare Data

  1. Download data from http://www.wisdom.weizmann.ac.il/~vision/SpaceTimeActions.html, under the section of Classification Database.
  2. Make a dir, for classification data:
mkdir -p data/classification
  1. Unzip all .zip files (Walk, Run, ..., Skip) and put all of them under data/classification
  2. run the following lines to get the preprocessed data:
chmod +x ./get_data.sh
./get_data.sh

Training

  1. Pretrain the encoder and classifier
python train_attr_cls.py --use_cuda # GPU mode, or
python train_attr_cls.py            # CPU mode
  1. Train VideoVAE
python main.py --use_cuda --cls_weight path/to/cls_weight # GPU mode, or
python main.py --cls_weight path/to/cls_weight            # CPU mode

For example,

python train_attr_cls.py --exp exp_test --use_cuda

and after running ~10 epochs, run

python main.py --use_cuda --cls_weight ExperimentAttr/exp_test/checkpoint/classifier_10.pth

Tensorboard

  1. Run
tensorboard --logdir .

to check the log for loss and generated sequences.

Acknowledgement:

The code is heavily borrowed from https://github.com/pytorch/examples/blob/master/vae/main.py

Disclaimer:

Since we do not know the exact parameters and model structures of the original paper (especially the settings in the structured latent space), we are not able to fully reproduce the synthesizing results from the original paper. We will update our implementation as soon as we figured out where the bug is in our code or we have any new idea that achieved better results.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published