Yanwei Wang, Ching-Yun Ko, Pulkit Agrawal
Codebase of this paper. See videos on the paper website.
- Run
conda create --name <env> --file requirements.txt - Install package
PerceptualSimilarity - Install package
CoordConv
- Download Gibson
.glbfiles and store them in a folder calledgibson - To generate habitat dataset to train PTZ module, run
./gen_ptz_data.sh < train/test_env.txtinsidegen_data - Folders
habitat_trainandhabitat_testshould now have 6500 images and 2300 images in total respectively from different environments. We sample 10 locations from each environment and generate 10 images at each location via consecutive right turns.
- To generate noise dataset to train PTZ module, run
./gen_noise_data.shinsidegen_data - Folders
noise_trainandnoise_testshould now have 40k and 4k images in total respectively. Both contain 4 folders corresponding to fractal noise, perlin noise, overlaping random shapes and non-overlaping random shapes.
- Run
./train_ptz.shto train the PTZ module - Run
./eval_ptz.shto eval the PTZ module
- Run
./gen_data/gen_nav_data.sh nav_traincontains 10 environments, each has 1k validation data innav0and 5k training data innav1
- Run
./train_nav.sh
- Build a target environment floor map by first randomly exploring the the space via
gen_ptz_data.sh. - Generate a scatter plot of all the valid locations via
load_all_statesfromnav.py - Contour a floor map using a concave hull algorithm via
load_floorfromnav.py - Run
./eval_nav.sh