Skip to content

wzx99/CLIPOCR

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Symmetrical Linguistic Feature Distillation with CLIP for Scene Text Recognition

This is a pytorch implementation for paper CLIPOCR

Installation

Requirements

  • Python==3.8.12
  • Pytorch==1.11.0
  • CUDA==11.3
conda create --name CLIPOCR python=3.8.12 -y
conda activate CLIPOCR
pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 --extra-index-url https://download.pytorch.org/whl/cu113
pip install -r requirements.txt

Datasets

Download the datasets to the "data" folder following parseq. The structure of data folder as below.

data
├── test
│   ├── CUTE80
│   ├── IC13_857
│   ├── IC15_1811
│   ├── IIIT5k
│   ├── SVT
│   └── SVTP
├── train
│   └── synth
│       ├── MJ
│       │   ├── train
│       │   ├── test
│       │   └── valid
│       └── ST

Training

python train.py trainer.gpus=2 ckpt_name=clipocr_synth dataset=synth model=clipocr model.batch_size=160 trainer.val_check_interval=1.0 trainer.max_epochs=5 model.lr=0.0014

Testing

Pretrained model is available in here.

python test.py ckpt/clipocr_synth/run/checkpoints --data_root data

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages