This is a pytorch implementation for paper CLIPOCR
- Python==3.8.12
- Pytorch==1.11.0
- CUDA==11.3
conda create --name CLIPOCR python=3.8.12 -y
conda activate CLIPOCR
pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 --extra-index-url https://download.pytorch.org/whl/cu113
pip install -r requirements.txtDownload the datasets to the "data" folder following parseq. The structure of data folder as below.
data
├── test
│ ├── CUTE80
│ ├── IC13_857
│ ├── IC15_1811
│ ├── IIIT5k
│ ├── SVT
│ └── SVTP
├── train
│ └── synth
│ ├── MJ
│ │ ├── train
│ │ ├── test
│ │ └── valid
│ └── STpython train.py trainer.gpus=2 ckpt_name=clipocr_synth dataset=synth model=clipocr model.batch_size=160 trainer.val_check_interval=1.0 trainer.max_epochs=5 model.lr=0.0014Pretrained model is available in here.
python test.py ckpt/clipocr_synth/run/checkpoints --data_root data