Xiaoyao Wei, Zongrui Li, Binjie Ding, Boxin Shi, Xudong Jiang, Gang Pan, Yanlong Cao, and Qian Zheng https://ieeexplore.ieee.org/document/10948383
ESSENCE-Net is implemented in PyTorch with Ubuntu 18.04 and an NVIDIA GeForce RTX 3090 GPU (24GB).
- Python 3.8.5
- PyTorch (version = 1.90)
- numpy
- scipy
- CUDA-11.1
- einops
- Dense setups (96 input images)
python main_test.py --in_img_num 96
- Sparse setups (10 input images)
python main_test.py --in_img_num 10
The ground truth of the DiLiGenT102 dataset, DiLiGenT-Π dataset, and DiLiGenRT dataset is not publicly available. You can use these codes to estimate normal maps and submit the estimated normal maps to the corresponding website for evaluation of normal errors.
The training code will be made available soon.
We have provided the estimated surface normal maps (error maps) on the DiLiGenT, DiLiGenT102, DiLiGenT-Π, and DiLiGenRT benchmark datasets under 96/100 input images in ./pre_trained_model/.
Our code is partially based on https://github.com/guanyingc/PS-FCN.