Skip to content

wenboran2002/open4dhoi_code

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

23 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Efficient and Scalable Monocular Human-Object Interaction Motion Reconstruction

arXiv Project Page Hugging Face

Teaser Image

📰 News

[2025-12-02] Annotate app code released!

[2025-12-03] 4DHOISolver code released!

🚀 To Do

[x] Release core inference code.

[x] Release Automatic 4DHOI Reconstruction Code.

[ ] Release Dataset

🛠️ Installation

conda create -n 4dhoi_solver python=3.10
conda activate 4dhoi_solver
pip install torch==2.3.0 torchvision==0.18.0 torchaudio==2.3.0 --index-url https://download.pytorch.org/whl/cu121

# install pytorch3d
pip install "git+https://github.com/facebookresearch/pytorch3d.git"
pip install -r requirements.txt

🖥️ Annotate app

Data Preparation

You can download the test data from Google Drive and place it in ./demo.

The data structure should be like this:

./demo
├── align ## depth alignment result for initialization
├── motion ## motion reconstruction from GVHMR
├── mask_dir
├── human_mask_dir
├── video.mp4
└── obj_org.obj ## object model

Install

please follow https://github.com/facebookresearch/co-tracker to install co-tracker. Remember to download scaled_online.pth from co-tracker and place it in Annot-app/co-tracker/checkpoints/

Then install the Annot-app code:

cd Annot-app/co-tracker
pip install -e .

Usage

See Annot-app/README.md for more details.

🧩 Automatic 4DHOI Reconstruction

Please refer to https://github.com/wenboran2002/4dhoi_autorecon, we now released the sam3d version of the reconstruction.

🎯 4DHOISolver

4DHOISolver is a tool for optimizing and rendering 4D human-object interaction sequences. It takes annotated video data and produces optimized human body parameters and object poses in a global coordinate system.

📦 Environment Setup

# install GVHMR
git clone https://github.com/zju3dv/GVHMR.git 
cd GVHMR && pip install -e .
cd multiperson/sdf && pip install -e . --no-build-isolation && cd ../..
cd neural_renderer && pip install -e . --no-build-isolation && cd ../..

🔑 Download SMPL-X Model

  1. Download SMPLX_NEUTRAL.npz from the SMPL-X website
mkdir -p video_optimizer/smpl_models
mv SMPLX_NEUTRAL.npz video_optimizer/smpl_models/

Usage

See 4DHOISolver/README.md for more details.

📖 Citation

If you find this code useful for your research, please consider citing our paper:

@misc{wen2025efficientscalablemonocularhumanobject,
      title={Efficient and Scalable Monocular Human-Object Interaction Motion Reconstruction}, 
      author={Boran Wen and Ye Lu and Keyan Wan and Sirui Wang and Jiahong Zhou and Junxuan Liang and Xinpeng Liu and Bang Xiao and Dingbang Huang and Ruiyang Liu and Yong-Lu Li},
      year={2025},
      eprint={2512.00960},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2512.00960}, 
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published