Revisiting Adversarial Patches for Designing Camera-Agnostic Attacks against Person Detection (NeurIPS 2024)
This repository enables the generation of adversarial patches that remain effective under multiple camera devices.
Hui Wei1, Zhixiang Wang2, Kewei Zhang1, Jiaqi Hou1, Yuanwei Liu1, Hao Tang3, Zheng Wang1
1Wuhan University, 2University of Tokyo, 3Peking University.
- 2024.10.10: Repo is released.
- 2024.09.26: Paper is accepted to NeurIPS 2024.
- Clone this repo:
git clone https://github.com/weihui1308/CAP.git
cd CAP- Install dependencies:
pip install -r requirements.txt- Download the weight files:
- Finetuned YOLOv5 model: finetune_yolov5s_onINRIA.pt
- Camera ISP proxy network model: checkpoint_ISPNet.pth
- Optimize the adversarial patch:
python train.py --data config/data_config.yaml --weights checkpoints/finetune_yolov5s_onINRIA.pt --batch_size 32 --epochs 1000- Evaluate a given adversarial patch:
python val.py --patch_name patch/onePatch.pngIf you find our work useful, please kindly cite as:
@inproceedings{wei2024cap,
title={Revisiting Adversarial Patches for Designing Camera-Agnostic Attacks against Person Detection},
author={Wei, Hui and Wang, Zhixiang and Zhang, Kewei and Hou, Jiaqi and Liu, Yuanwei and Tang, Hao and Wang, Zheng},
booktitle={The Thirty-eighth Annual Conference on Neural Information Processing Systems},
year={2024}
}