- Clone the repository
git clone https://github.com/warshallrho/Dynamics-DP.git
cd Dynamics-DP- Create & activate a virtual environment
conda create -n dynamicsdp python==3.10
conda activate dynamicsdp- install dependencies
# install torch
pip install torch==2.6.0 torchvision==0.21.0 torchaudio==2.6.0 --index-url https://download.pytorch.org/whl/cu118
pip install -e .- Download dataset and checkpoints Download files from here and decompressed it to the project folder. The folder structure should show as below:
├── assets
├── data
│ └── insertT_sim
├── dynamicsdp
│ ├── __init__.py
│ ├── configs
│ ├── insertT
│ ├── stow
│ └── utils
├── LICENSE
├── outputs
│ └── model
│ └── insertT_sim
│ ├── dfp
│ ├── dynamics
│ └── planning
├── pyproject.toml
└── README.md
python dynamicsdp/insertT/env/insertT_env.pyYou can also collection your own training dataset with following command
python dynamicsdp/insertT/teleop/human_demo_collection.py --recordTips for human_demo_collection
- Move mouse slowly during tele-operation for better performance
- See the
human_demo_datasection indynamicsdp/configs/insert_config.yamlfor more option
Automaticaly generate self-play data for training dynamics model
python dynamicsdp/insertT/dynamics/data_generation.pyTrain dynamics model
python dynamicsdp/insertT/dynamics/train.pyVisualize the performance of the dynamics model
python dynamicsdp/insertT/dynamics/visualization.pyIt is also recommanded to test the dynamics model with interaction environment
python dynamicsdp/insertT/dynamics/interaction_demo.pyWith the dynamics model, augmented demo data can be generated for training diffusion policy
python dynamicsdp/insertT/planning/mppi_data_generation.pyYou can also visualize how mppi planner working during data augmentation
python dynamicsdp/insertT/planning/mppi_visualization.pyTrain diffusion policy
python dynamicsdp/insertT/dfp/train.pyEvaluate diffusion policy
python dynamicsdp/insertT/dfp/evaluation.py@inproceedings{wu2025neural,
title={Neural Dynamics Augmented Diffusion Policy},
author={Wu, Ruihai and Chen, Haozhe and Zhang, Mingtong and Lu, Haoran and Li, Yitong and Li, Yunzhu},
booktitle={IEEE International Conference on Robotics and Automation (ICRA)},
year={2025}
}
