Skip to content

An anthology of recent continual learning papers, where people interested in this fascinating topic can start discovering its multidimensional representations.

Notifications You must be signed in to change notification settings

umbertocappellazzo/CL_Anthology

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

31 Commits
 
 

Repository files navigation

CL_Anthology

This repository collects a list (non-exhaustive and under-development) of recent continual learning (CL) papers, with the intention of providing the reader with a structured overview of the state-of-the-art CL papers divided by the category (e.g., rehearsal, regularization, architectural) and the modality (e.g., audio/speech, text/NLP, image/vision) considered in the papers. Given my constant quest to keep up with brand-new papers, I hope this collection can come in handy for other people.

I would like to include papers that in my opinion are compelling and noteworthy, nevertheless any suggestion is warmly appreciated, so if you think a paper is worth being listed here, please let me know!

Legend:

  • ARC: architectural-based approach; REH: rehearsal-based approach; REG: regularization-based approach.

CL Surveys

  • G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter, “Continual lifelong learning with neural networks: A review,” Neural Networks, vol. 113, pp. 54–71, 2019. [Paper]
  • T. Lesort, V. Lomonaco, A. Stoian, D. Maltoni, D. Filliat, and N. Diaz-Rodriguez, "Continual learning for robotics: Definition, framework, learning strategies, opportunities and challenges". Information Fusion, 58:52–68, 2020. [Paper]
  • M. De Lange, R. Aljundi, M.Masana, et al., “A continual learning survey: Defying forgetting in classification tasks,” TPAMI, vol. 44, no. 7, pp. 3366–3385, 2021. [Paper]
  • L. Wang, X. Zhang, H. Su, and J. Zhu. "A comprehensive survey of continual learning: Theory, method and application". arXiv preprint, 2023. [Paper]
  • D. Zhou, Q. Wang, Z. Qi, H. Ye, D. Zhan, and Z. Liu, "Deep Class-Incremental Learning: A Survey ", arXiv preprint, 2023. [Paper]
  • Wang, Z., Yang, E., Shen, L. and Huang, H., "A Comprehensive Survey of Forgetting in Deep Learning Beyond Continual Learning", arXiv preprint, 2023. [Paper]
  • Kilickaya, M., van de Weijer, J. and Asano, "Towards Label-Efficient Incremental Learning: A Survey", arXiv preprint, 2023. [Paper]

CL in Vision

  • Wang, K., Herranz, L. and van de Weijer, J., "Continual learning in cross-modal retrieval", CVPR, 2021. REG [Paper]
  • Wang, Z., Zhang, Z., Lee, C.Y., Zhang, H., Sun, R., Ren, X., Su, G., Perot, V., Dy, J. and Pfister, T., "Learning to prompt for continual learning", CVPR, 2022. ARC [Paper]
  • Sun, S., Calandriello, D., Hu, H., Li, A. and Titsias, M., "Information-theoretic online memory selection for continual learning", ICLR, 2022. REH [Paper]
  • Boschini, M., Bonicelli, L., Buzzega, P., Porrello, A. and Calderara, S., "Class-incremental continual learning into the extended der-verse", TPAMI, 2022. REH + REG [Paper]
  • Smith, J. and Karlinsky, L. and Gutta, V. and Cascante-Bonilla, P. et al., "CODA-Prompt: COntinual Decomposed Attention-based Prompting for Rehearsal-Free Continual Learning", CVPR, 2023. ARC [Paper]
  • Jeeveswaran K, Bhat P, Zonooz B, Arani E., "BiRT: Bio-inspired Replay in Vision Transformers for Continual Learning", ICML, 2023. REH + REG [Paper]
  • Frascaroli, E., Benaglia, R., Boschini, M., Moschella, L., Fiorini, C., Rodolà, E. and Calderara, S., "CaSpeR: Latent Spectral Regularization for Continual Learning", arxiv preprint, 2023. REG [Paper]
  • Jiang, S., Fang, Y., Zhang, H., Wang, P., Qi, Y. and Liu, Q., "Teacher Agent: A Non-Knowledge Distillation Method for Rehearsal-based Video Incremental Learning", arxiv preprint, 2023. REH + REG [Paper]
  • S. Paul, L. Frey, R. Kamath, K. Kersting, M. Mundt, "Masked Autoencoders are Efficient Continual Federated Learners", arxiv preprint, 2023. REG [Paper]
  • De Lange, M., van de Ven, G. and Tuytelaars, T., "Continual evaluation for lifelong learning: Identifying the stability gap", ICLR, 2023. [Paper]
  • Kang, Z., Fini, E., Nabi, M., Ricci, E. and Alahari, K., "A soft nearest-neighbor framework for continual semi-supervised learning", ICCV, 2023. REG + REH [Paper]
  • Yoon, J., Hwang, S.J. and Cao, Y., "Continual Learners are Incremental Model Generalizers", ICML, 2023. REG + ARC [Paper]
  • Zhao, H., Zhou, T., Long, G., Jiang, J. and Zhang, C., "Does Continual Learning Equally Forget All Parameters?", ICML, 2023. REH [Paper]
  • Wang, Z., Zhan, Z., Gong, Y., Shao, Y., Ioannidis, S., Wang, Y. and Dy, J., "DualHSIC: HSIC-Bottleneck and Alignment for Continual Learning", ICML, 2023. REH + REG [Paper]
  • Ni, Z., Wei, L., Tang, S., Zhuang, Y. and Tian, Q., "Continual Vision-Language Representaion Learning with Off-Diagonal Information", ICML, 2023. REG [Paper]
  • Hu, Z., Lyu, J., Gao, D. and Vasconcelos, N., POP: Prompt Of Prompts for Continual Learning, arxiv preprint, 2023. REH + ARCH [Paper]
  • Zhai, J.T., Liu, X., Bagdanov, A.D., Li, K. and Cheng, M.M., Masked Autoencoders are Efficient Class Incremental Learners, ICCV, 2023. REH + REG [Paper]
  • Khan, M.G.Z.A., Naeem, M.F., Van Gool, L., Stricker, D., Tombari, F. and Afzal, M.Z., Introducing Language Guidance in Prompt-based Continual Learning, ICCV, 2023. ARCH [Paper]

CL for Image Segmentation

  • Yang, G., Fini, E., Xu, D., Rota, P., Ding, M., Nabi, M., Alameda-Pineda, X. and Ricci, E., "Uncertainty-aware contrastive distillation for incremental semantic segmentation", TPAMI, 2022. REG [Paper]
  • Zhao, D., Yuan, B. and Shi, Z., "Inherit With Distillation and Evolve With Contrast: Exploring Class Incremental Semantic Segmentation Without Exemplar Memory", TPAMI, 2023. REG [Paper]
  • Cermelli, F., Cord, M. and Douillard, A., "CoMFormer: Continual Learning in Semantic and Panoptic Segmentation", CVPR, 2023. REG [Paper]

CL for Audio and Speech

  • U. Cappellazzo, D. Falavigna, and A. Brutti, "An Investigation of the Combination of Rehearsal and Knowledge Distillation in Continual Learning for Spoken Language Understanding", INTERSPEECH, 2023. REH + REG [Paper]
  • Wang, Z., Subakan, C., Jiang, X., Wu, J., Tzinis, E., Ravanelli, M. and Smaragdis, P., "Learning Representations for New Sound Classes With Continual Self-Supervised Learning", IEEE Signal Processing Letters, 2023. REG [Paper]
  • U. Cappellazzo, M. Yang, D. Falavigna, and A. Brutti, "Sequence-Level Knowledge Distillation for Class-Incremental End-to-End Spoken Language Understanding", INTERSPEECH, 2023. REH + REG [Paper]
  • Jiang, X., Li, Y.A. and Mesgarani, N., "DeCoR: Defy Knowledge Forgetting by Predicting Earlier Audio Codes", INTERSPEECH, 2023. REG [Paper]
  • Diwan, A., Yeh, C.F., Hsu, W.N., Tomasello, P., Choi, E., Harwath, D. and Mohamed, A., "Continual Learning for On-Device Speech Recognition using Disentangled Conformers", ICASSP, 2023. ARC [Paper]
  • Selvaraj, N.M., Guo, X., Kong, A., Shen, B. and Kot, A., Adapter Incremental Continual Learning of Efficient Audio Spectrogram Transformers, INTERSPEECH, 2023. ARC [Paper]
  • Michieli, U., Parada, P.P. and Ozay, M., "Online Continual Learning in Keyword Spotting for Low-Resource Devices via Pooling High-Order Temporal Statistics", INTERSPEECH, 2023. REG [Paper]

CL in NLP

  • Cao, Y., Wei, H.R., Chen, B. and Wan, X., "Continual learning for neural machine translation", NAACL-HLT, 2021. REG [Paper]
  • A. Razdaibiedina, Y. Mao and R. Hou, M. Khabsa, M. Lewis, and A. Almahairi, "Progressive prompts: Continual learning for language models", ICLR, 2023. ARC [Paper]
  • Ke, Z., Shao, Y., Lin, H., Konishi, T., Kim, G. and Liu, B., "Continual Pre-training of Language Models", ICLR, 2023. REG [Paper]
  • Wang, J., Dong, D., Shou, L., Chen, K. and Chen, G., "Effective Continual Learning for Text Classification with Lightweight Snapshots", AAAI, 2023. REG + ARC [Paper]

CL for Vision-Language

  • D. Zhou, Y. Zhang, J. Ning, H. Ye, D. Zhan, and Z. Liu, "Learning without Forgetting for Vision-Language Models", arXiv preprint, 2023. ARC [Paper]
  • He X, Feng W, Fu TJ, Jampani V, Akula A, Narayana P, Basu S, Wang WY, Wang XE, "Discriminative Diffusion Models as Few-shot Vision and Language Learners", arxiv preprint, 2023. ARC [Paper]

About

An anthology of recent continual learning papers, where people interested in this fascinating topic can start discovering its multidimensional representations.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published