Skip to content

uhlerlab/imageaeot

 
 

Repository files navigation

ImageAEOT

This repository contains data and code for the paper, "Predicting Cell Lineages using Autoencoders and Optimal Transport." (link)

Data

The image and auxiliary files can be downloaded from Google Drive. (link)

Setup and requirements

Dependencies are listed in environment.yml file and can be installed using Anaconda/Miniconda:

conda env create -f environment.yml

Autoencoder models were trained on an NVIDIA GTX 1080TI GPU.

Usage

To train the autoencoder on the coculture image files:

python run_train.py --datadir <path/to/image/directory> --save-dir <path/to/save/directory>

To train the autoencoder with latent space classifier on the coculture image files:

python run_train.py --datadir <path/to/image/directory> --save-dir <path/to/save/directory> --train-metafile splits/train_total_labeled.csv --val-metafile splits/val_total_labeled.csv --model-type AugmentedAE --dataset-type labeled

To extract AE features:

python get_features.py --datadir <path/to/image/directory> --save-dir <path/to/save/directory> --pretrained-file <path/to/checkpoint.pth> --ae-features

To extract AE features trained with latent space classifier:

python get_features.py --datadir <path/to/image/directory> --save-dir <path/to/save/directory> --pretrained-file <path/to/checkpoint.pth> --ae-features --model-type AugmentedAE

To run and evaluate features on the benchmark task:

python run_ot.py --featfile <path/to/features/file.txt> --evalfeatfile <path/to/label/file.txt> --save-dir <path/to/save/directory> --label1 <0/1/2> --label2 3 --reg .05

where the label files are provided found in the labels directory. If evaluating eccentricity or roundness, make sure to include the --split-features tag.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%