Skip to content

fast nonconvex algorithm for covariate-adjusted precision matrix estimation/conditional Gaussian graphical model estimation

Notifications You must be signed in to change notification settings

uclaml/nonconvex-CGGM

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Fast nonconvex algorithm for covariate-adjusted precision matrix estimation/conditional Gaussian graphical model estimation

This repository contains our Matlab implementation of covariate-adjusted precision matrix estimation in the paper Covariate Adjusted Precision Matrix Estimation via Nonconvex Optimization.

Useful parameters:

  • params.T : Number of total iterations
  • params.n : Number of samples
  • params.m : Number of output dimensions
  • params.d : Number of input dimensions
  • params.eta_Gamma : Learning rate for Gamma
  • params.eta_Omega : Learning rate for Omega
  • params.s_Gamma : Hard-thresholding parameter for Gamma
  • params.s_Omega : Hard-thresholding parameter for Omega
  • params.Gamma_star : Ground truth matrix Gamma_star, if exists
  • params.Omega_star : Ground truth matrix Omega_star, if exists
  • params.stopprecision: Threshold for stopping criterion
  • params.test : Evaluate test samples (1) or training only (0)
  • params.lambda_Gamma : Soft-thresholding parameter for initialize Gamma
  • params.lambda_Omega : Soft-thresholding parameter for initialize Omega
  • params.epsilon : Ridge parameter for initialize Gamma
  • params.nu : Ridge parameter for initialize Omega

About

fast nonconvex algorithm for covariate-adjusted precision matrix estimation/conditional Gaussian graphical model estimation

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages