Installation generally follows vanilla Gaussian Splatting installation.
git clone [email protected]:tyz1030/recgs.git --recursive
or
git clone https://github.com/tyz1030/recgs.git --recursive
Conda environment is the same with vanilla Gaussian Splatting (original repo)
to do
conda activate gaussian_splatting
python3 train.py -s /data/xxxxxx # train a vanila 3DGS first
python3 train_recgs.py -s /data/xxxxxx --start_checkpoint output/xxxxxx/chkpnt30000.pth
python3 render_recgs.py -s /data/xxxxxx -m output/xxxxxx
@ARTICLE{zhang2025recgs,
author={Zhang, Tianyi and Zhi, Weiming and Meyers, Braden and Durrant, Nelson and Huang, Kaining and Mangelson, Joshua and Barbalata, Corina and Johnson-Roberson, Matthew},
journal={IEEE Robotics and Automation Letters},
title={RecGS: Removing Water Caustic With Recurrent Gaussian Splatting},
year={2025},
volume={10},
number={1},
pages={668-675},
keywords={Three-dimensional displays;Cameras;Sea floor;Filtering;Neural radiance field;Lighting;Robot vision systems;Solid modeling;Robots;Rendering (computer graphics);Deep learning for visual perception;marine robotics},
doi={10.1109/LRA.2024.3511418}}
