Skip to content
/ SDA Public

implementation for MM21 paper "Selective dependency aggregation for action classification"

License

Notifications You must be signed in to change notification settings

ty-97/SDA

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

50 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Selective dependency aggregation for action classification

Implementation for MM21 paper "Selective dependency aggregation for action classification"(http://staff.ustc.edu.cn/~hexn/papers/mm21-SDA.pdf)

Citation

Introduction

The 3D dynamic nature of video data widens the sphere of actions with an order of magnitude larger than the 2D static vision, resulting in multiple dependencies across space and time dimensions. Those dependencies contribute differently given different videos.

Selective dependency aggregation(SDA) models the dynamic video dependency perference and further boost the performance of existng action classification models.

Setups

Build a folder with the following structrue:

DATASET_NAME
|_ category.txt
|  |_ img
|  |_ trainValTest

Dataset Prepare

Something-something

  1. Please download the dataset and annotations from dataset provider.
  2. Download the category list from the following links: (category, passwd:atp5)
  3. Download the frame list from the following links: (V1, passwd: 9kbq; V2, passwd: iwfy).
  4. For sth V1, extract the raw file to /img; For sth V2, extract the raw file and further extract the frames to /img using vid2img, passwd is 8f54.

Diving48

EPIC-KITCHEN55

Requirements

  • Python 3
  • Pytorch1.8
  • TensorboardX
  • Thop

Run

Training

python train.py

Testing

python test.py

Results

Something-something

Method Frames X Crops X Clips #P FLOPs V1 V2
GST 8 x 1 x 1 21.0M 29.5G x 1 x 1 47.0 61.6
GST 16 x 1 x 1 21.0M 59.0G x 1 x 1 48.6 62.6
V4D 8 x 10 x 3 --- --- 50.4 ---
TSM+TPN 8 x 1 x 1 24.3M 33.0G x 1 x 1 49 62
TIN 16 x 1 x 1 24.3M 67.0G x 1 x 1 47 60.1
TEINet 8 x 1 x 1 30.4M 33.0G x 1 x 1 47.4 61.3
TEINet 16 x 1 x 1 30.4M 66.0G x 1 x 1 49.9 62.1
RubiksNet 8 x 1 x 2 --- --- 46.4 61.7
TAM 8 x 1 x 1 25.6M 33.0G x 1 x 1 46.5 60.5
TAM 16 x 1 x 1 25.6M 66.0G x 1 x 1 47.6 62.5
TEA 8 x 3 x 10 24.5M 35.0G x 3 x 10 51.7 ---
TEA 16 x 3 x 10 24.5M 70.0G x 3 x 10 52.3 ---
STM 8 x 3 x 10 24.0M 33.3G x 3 x 10 49.2 62.3
STM 16 x 3 x 10 24.0M 66.5G x 3 x 10 50.7 64.2
SmallBig 8 x 3 x 2 --- 57.0G x 3 x 2 48.3 61.6
SmallBig 16 x 3 x 2 --- 114.0G x 3 x 2 50.0 63.8
TSN 8 x 1 x 1 23.9M 32.9G 19.7 30
SDA-TSN 8 x 1 x 1 25.8M 33.9G 47.5 60.6
SDA-TSN 8 x 3 x 2 25.8M 33.9G x 3 x 2 49.5 63.0
SDA-TSN 16 x 1 x 1 25.8M 67.8G 49.3 62.4
SDA-TSN 16 x 3 x 2 25.8M 67.8G x 3 x 2 50.6 64.7
SDA-TSN_{En} (16+8) x 3 x 2 --- 101.7G x 3 x 2 52.6 66.1
TSM 8 x 1 x 1 23.9M 32.9G 45.6 59.7
SDA-TSM 8 x 1 x 1 25.8M 33.9G 48.6 61.8
TSM 8 x 1 x 2 23.9M 32.9G x 1 x 2 47.2 61.2
SDA-TSM 8 x 1 x 2 25.8M 33.9G x 1 x 2 50.2 63.6
SDA-TSM 8 x 3 x 2 25.8M 33.9G x 3 x 2 51.1 64.6
TSM 16 x 1 x 1 23.9M 65.8G 47.2 62.0
SDA-TSM 16 x 1 x 1 25.8M 67.8G 51.3 63.3
TSM 16 x 1 x 2 23.9M 65.8G x 1 x 2 48.4 63.1
SDA-TSM 16 x 1 x 2 25.8M 67.8G x 1 x 2 52.2 64.7
SDA-TSM 16 x 3 x 2 25.8M 67.8G x 3 x 2 52.8 65.4
SDA-TSM_{En} (16+8) x 3 x 2 --- 101.7G x 3 x 2 54.8 67.3

Diving48

Method Backbone #Frame Top-1 Top-5
C3D 3DResNet-50 8 73.4 96.0
GST ResNet-50 8 74.2 94.5
TSN ResNet-50 8 72.4 96.8
SDA-TSN ResNet-50 8 79.6 97.4
TSM ResNet-50 8 77.6 97.7
SDA-TSM ResNet-50 8 80.2 97.3

PIC-KITCHENS-55

Method Backbone #Frame Verb Noun
C3D 3DResNet-50 8 45.2 21.5
GST ResNet-50 8 46.4 21.1
TSN ResNet-50 8 37.4 23.1
SDA-TSN ResNet-50 8 50.7 24.6
TSM ResNet-50 8 48.2 22.9
SDA-TSM ResNet-50 8 50.0 24.4

Checkpoint can be found in checkpoint, passwd is utou.

About

implementation for MM21 paper "Selective dependency aggregation for action classification"

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages