Skip to content

tuetschek/to-llm-bot

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

50 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Task-oriented LLM Bot

Code accompaniment for the paper Are Large Language Models All You Need for Task-Oriented Dialogue? (Hudeček & Dušek, SIGDIAL 2023).

Installation

Use your Conda/Virtualenv and simply run:

pip install -r requirements.txt

Usage

  1. You need to create the FAISS vector store DB:
python create_faiss_db.py --output_faiss_db mwoz_db.pkl --total 10 --dataset multiwoz
  1. To use GPT-3.5, add your OpenAI API key into the file openai_key.txt.

  2. Edit the run_interact.sh file in case you want to include your own CUDA/Python etc. setup.

  3. You can now run the interactive bot with default settings like this:

./run_interact.sh

Alternatively, you can run interact.py directly and change the parameters.

  • num_examples changes the number of few-shot examples in the prompt
  • context_size changes the length of the dialogue context passed to the bot
  • goals_trial.json is just a trial file to try out user goal messages, you can use MultiWOZ 2.1's data.json directly (this is just a small sample of that file).
  • Other required files (database, ontology) are directly taken from MultiWOZ.

Cite us

If you use this code in your work, please cite this paper:

@inproceedings{hudecek_are_2023,
	address = {Prague, Czechia},
	title = {Are {Large} {Language} {Models} {All} {You} {Need} for {Task}-{Oriented} {Dialogue}?},
	url = {https://aclanthology.org/2023.sigdial-1.21},
	doi = {10.18653/v1/2023.sigdial-1.21},
	booktitle = {Proceedings of the 24th {Annual} {Meeting} of the {Special} {Interest} {Group} on {Discourse} and {Dialogue}},
	publisher = {Association for Computational Linguistics},
	author = {Hudeček, Vojtěch and Dusek, Ondrej},
	month = sep,
	year = {2023},
	pages = {216--228},
}

Acknowledgements

This work was funded by the European Union (ERC, NG-NLG, 101039303), project TL05000236 AI asistent pro žáky a učitele co-financed by the Technological Agency of the Czech Republic within the ÉTA 5 Programme, and Charles University project SVV 260 698. It used resources of the LINDAT/CLARIAH-CZ Research Infrastructure (Czech Ministry of Education, Youth, and Sports project No. LM2018101).

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Makefile 71.7%
  • Python 19.5%
  • CMake 5.3%
  • C 1.5%
  • C++ 1.5%
  • TypeScript 0.2%
  • Other 0.3%