|
| 1 | +--- |
| 2 | +description: | |
| 3 | + Locally graded categories. |
| 4 | +--- |
| 5 | +<!-- |
| 6 | +```agda |
| 7 | +open import Cat.Bi.Base |
| 8 | +open import Cat.Prelude |
| 9 | +``` |
| 10 | +--> |
| 11 | +```agda |
| 12 | +module Cat.LocallyGraded.Base where |
| 13 | +``` |
| 14 | + |
| 15 | +<!-- |
| 16 | +```agda |
| 17 | +private variable |
| 18 | + ob ℓb₁ ℓb₂ : Level |
| 19 | +``` |
| 20 | +--> |
| 21 | + |
| 22 | +# Locally graded categories {defines=locally-graded-category} |
| 23 | + |
| 24 | +<!-- [TODO: Reed M, 08/08/2025] Define enriched categories/actegories --> |
| 25 | + |
| 26 | +There is a striking similarity between [[displayed categories]], enriched categories, |
| 27 | +and actegories. All three of these concepts take the basic algebra of a category and |
| 28 | +replace the hom *sets* with some other notion of morphism graded by some base category |
| 29 | +$B$, and then equip those morphisms with an action of $B$. |
| 30 | + |
| 31 | +For a displayed category $\cE \liesover \cB$, our $\cB$-graded morphisms |
| 32 | +are the displayed hom sets $\cE_{u}(X', Y')$ over indexed over a $u : \cB(X,Y)$. |
| 33 | +The action of $\cB$ is a bit hard to see initially, but becomes painfully |
| 34 | +clear once you've gotten your hands dirty: it is given by transport of hom families. |
| 35 | + |
| 36 | +For an enriched category $\cC$, our $\cV$-graded morphisms are generalized |
| 37 | +elements $\cV(\Gamma, \cC(X,Y))$ for $\Gamma : \cV$. Moreover, $\cV$ acts on |
| 38 | +graded morphisms $\cV(\Gamma, \cC(X,Y))$ via precomposition with a morphism |
| 39 | +$\cV(\Delta, \Gamma)$. |
| 40 | + |
| 41 | +Finally, for an actegory $\cC$ equipped with an action $\oslash : \cV \times \cC \to \cC$, |
| 42 | +the appropriate notion of $V$-graded morphism is a sort of sort of "$\cV$-generalized morphism" |
| 43 | +$\cC(\Gamma \oslash X, Y)$ where $\Gamma : \cV$. The action of $\cV$ on these morphisms is given |
| 44 | +by functoriality of $\oslash$ and precomposition. |
| 45 | + |
| 46 | +**Locally graded categories** simultaneously generalize these three related notions |
| 47 | +by combining the indexing of a displayed category with a sort of "directed transport" |
| 48 | +operation that lets us move between indices. Explicitly, a locally graded category $\cE$ |
| 49 | +over a [[prebicategory]] $\cB$ consists of: |
| 50 | + |
| 51 | +- A family of objects $\cC_0 : \cB_0 \to \ty$ indexed by the objects of $\cB$. |
| 52 | +- A family of morphisms $\cC_1 : \cB_1(X,Y) \to \cC_0(X) \to \cC_0(Y) \to \set$ indexed |
| 53 | + by the 1-cells of $\cB$. |
| 54 | +- Identity and composite morphisms indexed over the identity 1-cell and composites of 1-cells. |
| 55 | +- An action $[-] : \cB_2(u,v) \to \cC_1(v,X',Y') \to \cC_1(u,X',Y')$ of 2-cells of $\cB$ |
| 56 | + on morphisms of $\cC$. |
| 57 | + |
| 58 | +```agda |
| 59 | +module _ (B : Prebicategory ob ℓb₁ ℓb₂) where |
| 60 | + private module B = Prebicategory B |
| 61 | +
|
| 62 | + record Locally-graded-precategory |
| 63 | + (oe ℓe : Level) |
| 64 | + : Type (ob ⊔ ℓb₁ ⊔ ℓb₂ ⊔ lsuc oe ⊔ lsuc ℓe) where |
| 65 | + no-eta-equality |
| 66 | + field |
| 67 | + Ob[_] : B.Ob → Type oe |
| 68 | + Hom[_] : ∀ {a b} → a B.↦ b → Ob[ a ] → Ob[ b ] → Type ℓe |
| 69 | + Hom[_]-set |
| 70 | + : ∀ {a b} (u : a B.↦ b) (a' : Ob[ a ]) (b' : Ob[ b ]) |
| 71 | + → is-set (Hom[ u ] a' b') |
| 72 | +
|
| 73 | + id' : ∀ {x x'} → Hom[ B.id {x} ] x' x' |
| 74 | + _∘'_ |
| 75 | + : ∀ {x y z x' y' z'} |
| 76 | + → {u : y B.↦ z} {v : x B.↦ y} |
| 77 | + → Hom[ u ] y' z' → Hom[ v ] x' y' |
| 78 | + → Hom[ u B.⊗ v ] x' z' |
| 79 | +
|
| 80 | + _[_] |
| 81 | + : ∀ {x y x' y'} {u v : x B.↦ y} |
| 82 | + → Hom[ v ] x' y' → u B.⇒ v → Hom[ u ] x' y' |
| 83 | +
|
| 84 | + infixr 30 _∘'_ |
| 85 | + infix 35 _[_] |
| 86 | +``` |
| 87 | + |
| 88 | +We also require that composition is associative and unital once |
| 89 | +suitably adjusted by an associator or unitor. |
| 90 | + |
| 91 | +```agda |
| 92 | + field |
| 93 | + idl→ |
| 94 | + : ∀ {x y x' y'} {u : x B.↦ y} |
| 95 | + → (f : Hom[ u ] x' y') |
| 96 | + → (id' ∘' f) [ B.λ→ u ] ≡ f |
| 97 | + idr→ |
| 98 | + : ∀ {x y x' y'} {u : x B.↦ y} |
| 99 | + → (f : Hom[ u ] x' y') |
| 100 | + → (f ∘' id') [ B.ρ→ u ] ≡ f |
| 101 | + assoc← |
| 102 | + : ∀ {a b c d a' b' c' d'} |
| 103 | + → {u : c B.↦ d} {v : b B.↦ c} {w : a B.↦ b} |
| 104 | + → (f : Hom[ u ] c' d') (g : Hom[ v ] b' c') (h : Hom[ w ] a' b') |
| 105 | + → (f ∘' (g ∘' h)) [ B.α→ u v w ] ≡ (f ∘' g) ∘' h |
| 106 | +``` |
| 107 | + |
| 108 | +Finally, we require that the action of 2-cells is functorial, and that |
| 109 | +identities and composites are sufficiently natural. |
| 110 | + |
| 111 | +```agda |
| 112 | + []-id |
| 113 | + : ∀ {x y x' y'} {u : x B.↦ y} |
| 114 | + → (f : Hom[ u ] x' y') |
| 115 | + → f [ B.Hom.id ] ≡ f |
| 116 | + []-∘ |
| 117 | + : ∀ {x y x' y'} {u v w : x B.↦ y} |
| 118 | + → (α : v B.⇒ w) (β : u B.⇒ v) |
| 119 | + → (f : Hom[ w ] x' y') |
| 120 | + → f [ α B.∘ β ] ≡ f [ α ] [ β ] |
| 121 | + []-id' |
| 122 | + : ∀ {x x'} |
| 123 | + → (α : B.id B.⇒ B.id) |
| 124 | + → id' {x} {x'} [ α ] ≡ id' {x} {x'} |
| 125 | + []-∘' |
| 126 | + : ∀ {x y z x' y' z'} {t u : y B.↦ z} {v w : x B.↦ y} |
| 127 | + → (α : t B.⇒ u) (β : v B.⇒ w) |
| 128 | + → (f : Hom[ u ] y' z') (g : Hom[ w ] x' y') |
| 129 | + → (f ∘' g) [ α B.◆ β ] ≡ f [ α ] ∘' g [ β ] |
| 130 | +``` |
0 commit comments