Skip to content

Commit 79f2188

Browse files
authored
defn: Locally graded categories (#542)
Just adds the definition of locally graded categories. Further theory requires a bunch of coherence lemmas about bicategories which I don't really want to do right now :)
1 parent 0245519 commit 79f2188

File tree

2 files changed

+131
-1
lines changed

2 files changed

+131
-1
lines changed

src/Cat/Bi/Base.lagda.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -16,7 +16,7 @@ import Cat.Reasoning as Cr
1616
module Cat.Bi.Base where
1717
```
1818

19-
# Prebicategories {defines=bicategory}
19+
# Prebicategories {defines="bicategory prebicategory"}
2020

2121
<!--
2222
```agda
Lines changed: 130 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,130 @@
1+
---
2+
description: |
3+
Locally graded categories.
4+
---
5+
<!--
6+
```agda
7+
open import Cat.Bi.Base
8+
open import Cat.Prelude
9+
```
10+
-->
11+
```agda
12+
module Cat.LocallyGraded.Base where
13+
```
14+
15+
<!--
16+
```agda
17+
private variable
18+
ob ℓb₁ ℓb₂ : Level
19+
```
20+
-->
21+
22+
# Locally graded categories {defines=locally-graded-category}
23+
24+
<!-- [TODO: Reed M, 08/08/2025] Define enriched categories/actegories -->
25+
26+
There is a striking similarity between [[displayed categories]], enriched categories,
27+
and actegories. All three of these concepts take the basic algebra of a category and
28+
replace the hom *sets* with some other notion of morphism graded by some base category
29+
$B$, and then equip those morphisms with an action of $B$.
30+
31+
For a displayed category $\cE \liesover \cB$, our $\cB$-graded morphisms
32+
are the displayed hom sets $\cE_{u}(X', Y')$ over indexed over a $u : \cB(X,Y)$.
33+
The action of $\cB$ is a bit hard to see initially, but becomes painfully
34+
clear once you've gotten your hands dirty: it is given by transport of hom families.
35+
36+
For an enriched category $\cC$, our $\cV$-graded morphisms are generalized
37+
elements $\cV(\Gamma, \cC(X,Y))$ for $\Gamma : \cV$. Moreover, $\cV$ acts on
38+
graded morphisms $\cV(\Gamma, \cC(X,Y))$ via precomposition with a morphism
39+
$\cV(\Delta, \Gamma)$.
40+
41+
Finally, for an actegory $\cC$ equipped with an action $\oslash : \cV \times \cC \to \cC$,
42+
the appropriate notion of $V$-graded morphism is a sort of sort of "$\cV$-generalized morphism"
43+
$\cC(\Gamma \oslash X, Y)$ where $\Gamma : \cV$. The action of $\cV$ on these morphisms is given
44+
by functoriality of $\oslash$ and precomposition.
45+
46+
**Locally graded categories** simultaneously generalize these three related notions
47+
by combining the indexing of a displayed category with a sort of "directed transport"
48+
operation that lets us move between indices. Explicitly, a locally graded category $\cE$
49+
over a [[prebicategory]] $\cB$ consists of:
50+
51+
- A family of objects $\cC_0 : \cB_0 \to \ty$ indexed by the objects of $\cB$.
52+
- A family of morphisms $\cC_1 : \cB_1(X,Y) \to \cC_0(X) \to \cC_0(Y) \to \set$ indexed
53+
by the 1-cells of $\cB$.
54+
- Identity and composite morphisms indexed over the identity 1-cell and composites of 1-cells.
55+
- An action $[-] : \cB_2(u,v) \to \cC_1(v,X',Y') \to \cC_1(u,X',Y')$ of 2-cells of $\cB$
56+
on morphisms of $\cC$.
57+
58+
```agda
59+
module _ (B : Prebicategory ob ℓb₁ ℓb₂) where
60+
private module B = Prebicategory B
61+
62+
record Locally-graded-precategory
63+
(oe ℓe : Level)
64+
: Type (ob ⊔ ℓb₁ ⊔ ℓb₂ ⊔ lsuc oe ⊔ lsuc ℓe) where
65+
no-eta-equality
66+
field
67+
Ob[_] : B.Ob → Type oe
68+
Hom[_] : ∀ {a b} → a B.↦ b → Ob[ a ] → Ob[ b ] → Type ℓe
69+
Hom[_]-set
70+
: ∀ {a b} (u : a B.↦ b) (a' : Ob[ a ]) (b' : Ob[ b ])
71+
→ is-set (Hom[ u ] a' b')
72+
73+
id' : ∀ {x x'} → Hom[ B.id {x} ] x' x'
74+
_∘'_
75+
: ∀ {x y z x' y' z'}
76+
→ {u : y B.↦ z} {v : x B.↦ y}
77+
→ Hom[ u ] y' z' → Hom[ v ] x' y'
78+
→ Hom[ u B.⊗ v ] x' z'
79+
80+
_[_]
81+
: ∀ {x y x' y'} {u v : x B.↦ y}
82+
→ Hom[ v ] x' y' → u B.⇒ v → Hom[ u ] x' y'
83+
84+
infixr 30 _∘'_
85+
infix 35 _[_]
86+
```
87+
88+
We also require that composition is associative and unital once
89+
suitably adjusted by an associator or unitor.
90+
91+
```agda
92+
field
93+
idl→
94+
: ∀ {x y x' y'} {u : x B.↦ y}
95+
→ (f : Hom[ u ] x' y')
96+
→ (id' ∘' f) [ B.λ→ u ] ≡ f
97+
idr→
98+
: ∀ {x y x' y'} {u : x B.↦ y}
99+
→ (f : Hom[ u ] x' y')
100+
→ (f ∘' id') [ B.ρ→ u ] ≡ f
101+
assoc←
102+
: ∀ {a b c d a' b' c' d'}
103+
→ {u : c B.↦ d} {v : b B.↦ c} {w : a B.↦ b}
104+
→ (f : Hom[ u ] c' d') (g : Hom[ v ] b' c') (h : Hom[ w ] a' b')
105+
→ (f ∘' (g ∘' h)) [ B.α→ u v w ] ≡ (f ∘' g) ∘' h
106+
```
107+
108+
Finally, we require that the action of 2-cells is functorial, and that
109+
identities and composites are sufficiently natural.
110+
111+
```agda
112+
[]-id
113+
: ∀ {x y x' y'} {u : x B.↦ y}
114+
→ (f : Hom[ u ] x' y')
115+
→ f [ B.Hom.id ] ≡ f
116+
[]-∘
117+
: ∀ {x y x' y'} {u v w : x B.↦ y}
118+
→ (α : v B.⇒ w) (β : u B.⇒ v)
119+
→ (f : Hom[ w ] x' y')
120+
→ f [ α B.∘ β ] ≡ f [ α ] [ β ]
121+
[]-id'
122+
: ∀ {x x'}
123+
→ (α : B.id B.⇒ B.id)
124+
→ id' {x} {x'} [ α ] ≡ id' {x} {x'}
125+
[]-∘'
126+
: ∀ {x y z x' y' z'} {t u : y B.↦ z} {v w : x B.↦ y}
127+
→ (α : t B.⇒ u) (β : v B.⇒ w)
128+
→ (f : Hom[ u ] y' z') (g : Hom[ w ] x' y')
129+
→ (f ∘' g) [ α B.◆ β ] ≡ f [ α ] ∘' g [ β ]
130+
```

0 commit comments

Comments
 (0)