1
+ use core:: ops;
2
+
3
+ use crate :: int:: { DInt , Int , MinInt } ;
4
+
1
5
pub mod add;
2
6
pub mod cmp;
3
7
pub mod conv;
@@ -6,11 +10,192 @@ pub mod extend;
6
10
pub mod mul;
7
11
pub mod pow;
8
12
pub mod sub;
9
- pub ( crate ) mod traits;
10
13
pub mod trunc;
11
14
12
- #[ cfg( not( feature = "public-test-deps" ) ) ]
13
- pub ( crate ) use traits:: { Float , HalfRep } ;
15
+ /// Wrapper to extract the integer type half of the float's size
16
+ pub ( crate ) type HalfRep < F > = <<F as Float >:: Int as DInt >:: H ;
17
+
18
+ public_test_dep ! {
19
+ /// Trait for some basic operations on floats
20
+ #[ allow( dead_code) ]
21
+ pub ( crate ) trait Float :
22
+ Copy
23
+ + core:: fmt:: Debug
24
+ + PartialEq
25
+ + PartialOrd
26
+ + ops:: AddAssign
27
+ + ops:: MulAssign
28
+ + ops:: Add <Output = Self >
29
+ + ops:: Sub <Output = Self >
30
+ + ops:: Div <Output = Self >
31
+ + ops:: Rem <Output = Self >
32
+ {
33
+ /// A uint of the same width as the float
34
+ type Int : Int <OtherSign = Self :: SignedInt , UnsignedInt = Self :: Int >;
35
+
36
+ /// A int of the same width as the float
37
+ type SignedInt : Int + MinInt <OtherSign = Self :: Int , UnsignedInt = Self :: Int >;
38
+
39
+ /// An int capable of containing the exponent bits plus a sign bit. This is signed.
40
+ type ExpInt : Int ;
41
+
42
+ const ZERO : Self ;
43
+ const ONE : Self ;
44
+
45
+ /// The bitwidth of the float type.
46
+ const BITS : u32 ;
47
+
48
+ /// The bitwidth of the significand.
49
+ const SIG_BITS : u32 ;
50
+
51
+ /// The bitwidth of the exponent.
52
+ const EXP_BITS : u32 = Self :: BITS - Self :: SIG_BITS - 1 ;
53
+
54
+ /// The saturated (maximum bitpattern) value of the exponent, i.e. the infinite
55
+ /// representation.
56
+ ///
57
+ /// This is in the rightmost position, use `EXP_MASK` for the shifted value.
58
+ const EXP_SAT : u32 = ( 1 << Self :: EXP_BITS ) - 1 ;
59
+
60
+ /// The exponent bias value.
61
+ const EXP_BIAS : u32 = Self :: EXP_SAT >> 1 ;
62
+
63
+ /// A mask for the sign bit.
64
+ const SIGN_MASK : Self :: Int ;
65
+
66
+ /// A mask for the significand.
67
+ const SIG_MASK : Self :: Int ;
68
+
69
+ /// The implicit bit of the float format.
70
+ const IMPLICIT_BIT : Self :: Int ;
71
+
72
+ /// A mask for the exponent.
73
+ const EXP_MASK : Self :: Int ;
74
+
75
+ /// Returns `self` transmuted to `Self::Int`
76
+ fn to_bits( self ) -> Self :: Int ;
77
+
78
+ /// Returns `self` transmuted to `Self::SignedInt`
79
+ fn to_bits_signed( self ) -> Self :: SignedInt ;
80
+
81
+ /// Checks if two floats have the same bit representation. *Except* for NaNs! NaN can be
82
+ /// represented in multiple different ways. This method returns `true` if two NaNs are
83
+ /// compared.
84
+ fn eq_repr( self , rhs: Self ) -> bool ;
85
+
86
+ /// Returns true if the sign is negative
87
+ fn is_sign_negative( self ) -> bool ;
88
+
89
+ /// Returns the exponent, not adjusting for bias.
90
+ fn exp( self ) -> Self :: ExpInt ;
91
+
92
+ /// Returns the significand with no implicit bit (or the "fractional" part)
93
+ fn frac( self ) -> Self :: Int ;
94
+
95
+ /// Returns the significand with implicit bit
96
+ fn imp_frac( self ) -> Self :: Int ;
97
+
98
+ /// Returns a `Self::Int` transmuted back to `Self`
99
+ fn from_bits( a: Self :: Int ) -> Self ;
100
+
101
+ /// Constructs a `Self` from its parts. Inputs are treated as bits and shifted into position.
102
+ fn from_parts( negative: bool , exponent: Self :: Int , significand: Self :: Int ) -> Self ;
103
+
104
+ fn abs( self ) -> Self {
105
+ let abs_mask = !Self :: SIGN_MASK ;
106
+ Self :: from_bits( self . to_bits( ) & abs_mask)
107
+ }
108
+
109
+ /// Returns (normalized exponent, normalized significand)
110
+ fn normalize( significand: Self :: Int ) -> ( i32 , Self :: Int ) ;
111
+
112
+ /// Returns if `self` is subnormal
113
+ fn is_subnormal( self ) -> bool ;
114
+ }
115
+ }
116
+
117
+ macro_rules! float_impl {
118
+ ( $ty: ident, $ity: ident, $sity: ident, $expty: ident, $bits: expr, $significand_bits: expr) => {
119
+ impl Float for $ty {
120
+ type Int = $ity;
121
+ type SignedInt = $sity;
122
+ type ExpInt = $expty;
123
+
124
+ const ZERO : Self = 0.0 ;
125
+ const ONE : Self = 1.0 ;
126
+
127
+ const BITS : u32 = $bits;
128
+ const SIG_BITS : u32 = $significand_bits;
129
+
130
+ const SIGN_MASK : Self :: Int = 1 << ( Self :: BITS - 1 ) ;
131
+ const SIG_MASK : Self :: Int = ( 1 << Self :: SIG_BITS ) - 1 ;
132
+ const IMPLICIT_BIT : Self :: Int = 1 << Self :: SIG_BITS ;
133
+ const EXP_MASK : Self :: Int = !( Self :: SIGN_MASK | Self :: SIG_MASK ) ;
134
+
135
+ fn to_bits( self ) -> Self :: Int {
136
+ self . to_bits( )
137
+ }
138
+ fn to_bits_signed( self ) -> Self :: SignedInt {
139
+ self . to_bits( ) as Self :: SignedInt
140
+ }
141
+ fn eq_repr( self , rhs: Self ) -> bool {
142
+ #[ cfg( feature = "mangled-names" ) ]
143
+ fn is_nan( x: $ty) -> bool {
144
+ // When using mangled-names, the "real" compiler-builtins might not have the
145
+ // necessary builtin (__unordtf2) to test whether `f128` is NaN.
146
+ // FIXME(f16_f128): Remove once the nightly toolchain has the __unordtf2 builtin
147
+ // x is NaN if all the bits of the exponent are set and the significand is non-0
148
+ x. to_bits( ) & $ty:: EXP_MASK == $ty:: EXP_MASK && x. to_bits( ) & $ty:: SIG_MASK != 0
149
+ }
150
+ #[ cfg( not( feature = "mangled-names" ) ) ]
151
+ fn is_nan( x: $ty) -> bool {
152
+ x. is_nan( )
153
+ }
154
+ if is_nan( self ) && is_nan( rhs) {
155
+ true
156
+ } else {
157
+ self . to_bits( ) == rhs. to_bits( )
158
+ }
159
+ }
160
+ fn is_sign_negative( self ) -> bool {
161
+ self . is_sign_negative( )
162
+ }
163
+ fn exp( self ) -> Self :: ExpInt {
164
+ ( ( self . to_bits( ) & Self :: EXP_MASK ) >> Self :: SIG_BITS ) as Self :: ExpInt
165
+ }
166
+ fn frac( self ) -> Self :: Int {
167
+ self . to_bits( ) & Self :: SIG_MASK
168
+ }
169
+ fn imp_frac( self ) -> Self :: Int {
170
+ self . frac( ) | Self :: IMPLICIT_BIT
171
+ }
172
+ fn from_bits( a: Self :: Int ) -> Self {
173
+ Self :: from_bits( a)
174
+ }
175
+ fn from_parts( negative: bool , exponent: Self :: Int , significand: Self :: Int ) -> Self {
176
+ Self :: from_bits(
177
+ ( ( negative as Self :: Int ) << ( Self :: BITS - 1 ) )
178
+ | ( ( exponent << Self :: SIG_BITS ) & Self :: EXP_MASK )
179
+ | ( significand & Self :: SIG_MASK ) ,
180
+ )
181
+ }
182
+ fn normalize( significand: Self :: Int ) -> ( i32 , Self :: Int ) {
183
+ let shift = significand. leading_zeros( ) . wrapping_sub( Self :: EXP_BITS ) ;
184
+ (
185
+ 1i32 . wrapping_sub( shift as i32 ) ,
186
+ significand << shift as Self :: Int ,
187
+ )
188
+ }
189
+ fn is_subnormal( self ) -> bool {
190
+ ( self . to_bits( ) & Self :: EXP_MASK ) == Self :: Int :: ZERO
191
+ }
192
+ }
193
+ } ;
194
+ }
14
195
15
- #[ cfg( feature = "public-test-deps" ) ]
16
- pub use traits:: { Float , HalfRep } ;
196
+ #[ cfg( f16_enabled) ]
197
+ float_impl ! ( f16, u16 , i16 , i8 , 16 , 10 ) ;
198
+ float_impl ! ( f32 , u32 , i32 , i16 , 32 , 23 ) ;
199
+ float_impl ! ( f64 , u64 , i64 , i16 , 64 , 52 ) ;
200
+ #[ cfg( f128_enabled) ]
201
+ float_impl ! ( f128, u128 , i128 , i16 , 128 , 112 ) ;
0 commit comments