Skip to content

team-approx-bayes/compact_memory_code

Repository files navigation

Compact Memory for Continual Logistic Regression

This is an implemenation for "Compact Memory for Continual Logistic Regression"

Description for implementation

  • example_four_moons.ipynb : results for four-moon task

  • setting_dataset.py : task generators

  • main_splitcifar100_basereplay_batch.py : baseline experience replay for Split-CIFAR-100

  • main_splitcifar100_baselambda_batch.py : baseline K-prior for Split-CIFAR-100

  • main_splitcifar100_ourem_batch.py : our method for Split-CIFAR-100

  • run_main_splitcifar100.sh : execute experimentsr for Split-CIFAR-100

Once you replace generate_setting_splitcifar100 in each main_**.py using another dataset generator in setting_dataset.py, the code can be run and evaluated on other datasets as well.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published