Accompanying repository of Robust-RRT: Probabilistically-Complete Motion Planning for Uncertain Nonlinear Systems
- Python 3.7 or above
- Run
python3 -m venv $ENV_PATH - Activate the virtual environment with
source $ENV_PATH/bin/activate
- Clone this repository from https://github.com/StanfordASL/randUP_RRT.git
- From
randUP_RRT, runpip install .
If randUP_RRT was set up in a virtual environment, the virtual environment must be active
in the terminal used to run the examples.
For all planning examples, use the optional argument --num_particles=1 to switch to RRT planning.
Use --num_particles=i for planning with i RandUP particles. By default, planning is done with RandUP-RRT
with the default number of particles.
-
Run
python3 planning/quadrotor_examples/plan_quadrotor.pyto plan and produce Figure 3. -
Run
python3 planning/quadrotor_examples/generate_quadrotor_statistics.pyto produce Table 1. This script does not take innum_particles.
- Run
python3 planning/planar_pusher_examples/feedback_pusher.pyto plan and visualize the planar pusher with PyBullet.
- Run
python3 planning/hybrid_integrator_examples/plan_hybrid_integrator.pyto plan and produce Figure 5.
hybrid_integrator,planar_pusher,quadrotor_plannerdefine the respective physical systemsplanningcontains all planning-related code*_examplescontain the scripts for running examplesrandup_rrt.pyimplements RandUP-RRT