DAViD: Modeling Dynamic Affordance of 3D Objects Using Pre-trained Video Diffusion Models (ICCV 2025)
This is the official code for the paper "DAViD: Modeling Dynamic Affordance of 3D Objects Using Pre-trained Video Diffusion Models".
To setup the environment for running DAViD, please refer to the instructions provided here.
To generate 2D HOI Images of given 3D object (in this case, barbell), use following command.
bash scripts/generate_2d_hoi_images.sh --dataset "ComAsset" --category "barbell" --device 0 --skip_done
![]() Rendered Image |
![]() Canny Edges |
![]() 2D HOI Image |
We leverage commercial image-to-video diffusion model Kling AI to make 2D HOI videos from 2D HOI images.
Specifically, we use imgur and PiAPI for uploading image and calling API for Kling AI. Check out scripts/videos/get.sh, scripts/videos/post_i2v.sh and setup your X-API-key of your PiAPI account. Also check out constants/videos.py and setup your client id of your imgur account. Note that you need paid version of Kling AI for directly follow our setting.
CUDA_VISIBLE_DEVICES=0 python src/generation/generate_videos.py --dataset "ComAsset" --category "barbell" --skip_doneOtherwise, you can use open-source image-to-video models such as Wan2.1, but we haven't tested it yet.
To generate 4D HOI Samples from the generated 2D HOI Images (of the given 3D object, barbell), use following command.
bash scripts/generate_4d_hoi_samples.sh --dataset "ComAsset" --category "barbell" --device 0 --skip_done
![]() 2D HOI Image |
![]() 2D HOI Video |
![]() 4D HOI Sample (Camera View) |
To visualize generated 4D HOI Samples, use following command.
blenderproc debug src/visualization/visualize_4d_hoi_sample.py --dataset "ComAsset" --category "barbell" --idx 0To train LoRA for MDM (of the given 3D object, barbell), use following command.
bash scripts/train_lora.sh --dataset "ComAsset" --category "barbell" --device 0To train Object Motion Diffusion Model (of the given 3D object, barbell), use following command.
bash scripts/train_omdm.sh --dataset "ComAsset" --category "barbell" --device 0
bash scripts/generate_human_motion.sh --max_seed 5 --dataset "ComAsset" --category "barbell" --device 0bash scripts/generate_object_motion.sh --dataset "ComAsset" --category "barbell" --device 0- We are keep updating the code (including dataset and environment setup)!
- [2025/07/10] Initial skeleton code release!
@misc{david,
title={DAViD: Modeling Dynamic Affordance of 3D Objects Using Pre-trained Video Diffusion Models},
author={Hyeonwoo Kim and Sangwon Baik and Hanbyul Joo},
year={2025},
eprint={2501.08333},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2501.08333},
}





