✶ indicates equal contribution † corresponding author
1Beijing Academy of Artificial Intelligence 2Institute for AI Industry Research(AIR), Tsinghua University 3Nanyang Technological University 4Beijing Institute of Technology 5Huazhong University of Science and TechnologyPlease follow these steps to setup the environment:
git clone https://github.com/shenlc19/GaussianArt --recursive
cd GaussianArt
# create and initialize conda environment
conda create -n gaussianart python=3.10
conda activate gaussianart
# install pytorch
pip install torch==1.12.1+cu116 torchvision==0.13.1+cu116 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu116
# install dependencies: submodules
pip install -r requirements.txt
pip install submodules/simple-knn
pip install submodules/art-diff-gaussian-rasterization
Pytorch3d(v0.7.5) is also required. Please clone the repository, checkout v0.7.5 and follow the instructions to install.
Download the dataset from link, save the compressed files to ./data and decompress them. Each instance follows the structure below:
./data
├── model_id
│ ├── start
│ ├── end
│ ├── gt
│ ├── transforms_test_end.json
│ ├── transforms_test_start.json
│ ├── transforms_test.json
│ ├── transforms_train_end.json
│ ├── transforms_train_start.json
│ ├── transforms_train.json
└── ...
Use model_id as a parameter to run the following command:
python run.py --model_id {model_id}
The training process includes depth-semantic initialization and motion-appearance joint optimization. The results will be saved to output/MPArt-90/{model_id}.
Evaluate the motion axis prediction by running the following command:
python eval_axis.py -m output/MPArt-90/{model_id}
Run the following command to render the reconstructed articulated object and visualize the part-level motion:
python render_video.py -m output/MPArt-90/{model_id}If you find our paper and/or code helpful, please consider citing:
@misc{shen2025gaussianartunifiedmodelinggeometry,
title={GaussianArt: Unified Modeling of Geometry and Motion for Articulated Objects},
author={Licheng Shen and Saining Zhang and Honghan Li and Peilin Yang and Zihao Huang and Zongzheng Zhang and Hao Zhao},
year={2025},
eprint={2508.14891},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2508.14891},
}
We acknowledge the authors of 3DGS, ArtGS, DigitalTwinArt for making their outstanding projects publicly available.
