Skip to content

shenlc19/GaussianArt

Repository files navigation

GaussianArt: Unified Modeling of Geometry and Motion for Articulated Objects (3DV 2026)

Licheng Shen✶1,2, Saining Zhang ✶1,2,3, Honghan Li ✶1,2,3, Peilin Yang1,4, Zihao Huang1,5, Zongzheng Zhang1,2, Hao Zhao†2,1

✶ indicates equal contribution † corresponding author

1Beijing Academy of Artificial Intelligence 2Institute for AI Industry Research(AIR), Tsinghua University 3Nanyang Technological University 4Beijing Institute of Technology 5Huazhong University of Science and Technology

Website | Arxiv | Data

Alt text

Environment Setup

Please follow these steps to setup the environment:

git clone https://github.com/shenlc19/GaussianArt --recursive
cd GaussianArt

# create and initialize conda environment

conda create -n gaussianart python=3.10
conda activate gaussianart

# install pytorch
pip install torch==1.12.1+cu116 torchvision==0.13.1+cu116 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu116

# install dependencies: submodules
pip install -r requirements.txt
pip install submodules/simple-knn 
pip install submodules/art-diff-gaussian-rasterization

Pytorch3d(v0.7.5) is also required. Please clone the repository, checkout v0.7.5 and follow the instructions to install.

Dataset Preparation

Download the dataset from link, save the compressed files to ./data and decompress them. Each instance follows the structure below:

 ./data
    ├── model_id
    │   ├── start
    │   ├── end
    │   ├── gt
    │   ├── transforms_test_end.json
    │   ├── transforms_test_start.json
    │   ├── transforms_test.json
    │   ├── transforms_train_end.json
    │   ├── transforms_train_start.json
    │   ├── transforms_train.json
    └── ...

Training

Use model_id as a parameter to run the following command:

python run.py --model_id {model_id}

The training process includes depth-semantic initialization and motion-appearance joint optimization. The results will be saved to output/MPArt-90/{model_id}.

Evaluation

Evaluate the motion axis prediction by running the following command:

python eval_axis.py -m output/MPArt-90/{model_id}

Render

Run the following command to render the reconstructed articulated object and visualize the part-level motion:

python render_video.py -m output/MPArt-90/{model_id}

Citation

If you find our paper and/or code helpful, please consider citing:

@misc{shen2025gaussianartunifiedmodelinggeometry,
      title={GaussianArt: Unified Modeling of Geometry and Motion for Articulated Objects}, 
      author={Licheng Shen and Saining Zhang and Honghan Li and Peilin Yang and Zihao Huang and Zongzheng Zhang and Hao Zhao},
      year={2025},
      eprint={2508.14891},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2508.14891}, 
}

Acknowledgement

We acknowledge the authors of 3DGS, ArtGS, DigitalTwinArt for making their outstanding projects publicly available.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages