Official PyTorch implementation of
"An Interpretable Multimodal AI System for Predicting Major Adverse Cardiovascular Events from Comprehensive Patient Profiles
"
MACE-MAIS is an end-to-end interpretable multimodal AI system for predicting Major Adverse Cardiovascular Events (MACE). It integrates:
- Cardiovascular Magnetic Resonance (CMR) imaging
- Electronic Health Records (EHR)
Key features:
- Handles missing modalities robustly
- Provides clinically meaningful explanations
- Python ≥ 3.9
- NVIDIA GPU + CUDA (optional, but recommended)
# 1. Clone the repository
git clone https://github.com/shaohao011/MACE-MAIS.git
cd MACE-MAIS
# 2. Create and activate conda environment
conda create -n mace-mais python=3.9
conda activate mace-mais
# 3. Install dependencies
pip install -r requirements.txtPlace your input data under the data/ directory. Follow the format specified in the preprocessing scripts.
# Split survival intervals
python survival_dst_make.py# Generate SFT data for LRM
python utils/gen_mace_cot.py
# Train LLM using LLaMA-Factory
cd LLaMA-Factory
bash train_llama.sh# Step 1: Run pretraining
cd Pre-train
bash do_pretrain.sh
# Step 2: Extract embeddings
python Pre-train/utils/get_embedding.py# Train and evaluate
bash do_train_survival.sh
# Tip: Set max_epochs=-1 for testing only