This repository was archived by the owner on Feb 28, 2024. It is now read-only.

Description
In skopt.Optimizer docs it said:
- a (lower_bound, upper_bound, "prior") tuple (for Real dimensions), ...
however if lower_bound and upper_bound are integers it generate an Integer dimension
a reproduceable example:
from skopt import BayesSearchCV
from sklearn.datasets import load_iris
from sklearn.svm import SVC
X, y = load_iris(return_X_y=True)
searchcv = BayesSearchCV(
SVC(gamma='scale'),
search_spaces={'C': (1, 100, 'log-uniform')},
n_iter=10,
cv=5,
scoring='f1_macro',
random_state=42
)
searchcv.fit(X, y)
print(searchcv.cv_results_['param_C'])
it shows a list of integer values.
Another bug:
with the same code above, when replacing (1, 100, 'log-uniform') with (1.1, 100, 'log-uniform'), it produce a ValueError: All values shouldbe greater than 0.041393