-
-
Notifications
You must be signed in to change notification settings - Fork 26.5k
Closed
Closed
Copy link
Description
Describe the bug
In Jupyter notebook, high verbosity, e.g. verbose=10 is currently not working when setting the multiprocessing, e.g. n_jobs=-1. It seems the output I got were only from the main thread/process, i.e.
Fitting 150 folds for each of 16 candidates, totalling 2400 fits
The output from process was not propagated correctly. This, strangely, does not happen in the iPython.

Just to be exact, they both use the same python and sklearn version.

Is there any way to check the progress on the current version? in Jupyter notebook?
Steps/Code to Reproduce
from sklearn import datasets
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import LeaveOneOut
iris = datasets.load_iris()
param_grid = {
'criterion': ['gini', 'entropy'],
'max_depth': range(2,10)
}
cv = GridSearchCV(
estimator=DecisionTreeClassifier(random_state=42), param_grid=param_grid, n_jobs=-1, verbose=10, cv=LeaveOneOut()
)
cv.fit(iris.data, iris.target)Expected Results
This is the output I'd expect. The example below is only using n_jobs=1, e.g.
Fitting 150 folds for each of 16 candidates, totalling 2400 fits
[CV 1/150; 1/16] START criterion=gini, max_depth=2..............................
[CV 1/150; 1/16] END criterion=gini, max_depth=2;, score=1.000 total time= 0.0s
[CV 3/150; 1/16] START criterion=gini, max_depth=2..............................
[CV 3/150; 1/16] END criterion=gini, max_depth=2;, score=1.000 total time= 0.0s
Actual Results
Only
Fitting 150 folds for each of 16 candidates, totalling 2400 fits
Versions
System:
python: 3.7.6 | packaged by conda-forge | (default, Jan 7 2020, 22:33:48) [GCC 7.3.0]
executable: /home/darren/anaconda3/bin/python
machine: Linux-5.4.0-94-generic-x86_64-with-debian-bullseye-sid
Python dependencies:
pip: 20.3.1
setuptools: 45.1.0.post20200119
sklearn: 1.0.2
numpy: 1.19.1
scipy: 1.5.2
Cython: 0.29.21
pandas: 1.2.2
matplotlib: 3.2.1
joblib: 0.14.1
threadpoolctl: 2.1.0
Built with OpenMP: TrueMetadata
Metadata
Assignees
Labels
No labels
