@@ -557,8 +557,8 @@ class GridSearchCV(BaseSearchCV):
557557 fit_params : dict, optional
558558 Parameters to pass to the fit method.
559559
560- n_jobs : int, optional
561- Number of jobs to run in parallel (default 1) .
560+ n_jobs : int, default 1
561+ Number of jobs to run in parallel.
562562
563563 pre_dispatch : int, or string, optional
564564 Controls the number of jobs that get dispatched during parallel
@@ -577,17 +577,17 @@ class GridSearchCV(BaseSearchCV):
577577 - A string, giving an expression as a function of n_jobs,
578578 as in '2*n_jobs'
579579
580- iid : boolean, optional
580+ iid : boolean, default=True
581581 If True, the data is assumed to be identically distributed across
582582 the folds, and the loss minimized is the total loss per sample,
583583 and not the mean loss across the folds.
584584
585- cv : integer or cross-validation generator, optional
586- If an integer is passed, it is the number of folds (default 3) .
585+ cv : integer or cross-validation generator, default=3
586+ If an integer is passed, it is the number of folds.
587587 Specific cross-validation objects can be passed, see
588588 sklearn.cross_validation module for the list of possible objects
589589
590- refit : boolean
590+ refit : boolean, default=True
591591 Refit the best estimator with the entire dataset.
592592 If "False", it is impossible to make predictions using
593593 this GridSearchCV instance after fitting.
@@ -636,7 +636,7 @@ class GridSearchCV(BaseSearchCV):
636636 best_estimator_ : estimator
637637 Estimator that was chosen by the search, i.e. estimator
638638 which gave highest score (or smallest loss if specified)
639- on the left out data.
639+ on the left out data. Not available if refit=False.
640640
641641 best_score_ : float
642642 Score of best_estimator on the left out data.
@@ -740,8 +740,8 @@ class RandomizedSearchCV(BaseSearchCV):
740740 fit_params : dict, optional
741741 Parameters to pass to the fit method.
742742
743- n_jobs : int, optional
744- Number of jobs to run in parallel (default 1) .
743+ n_jobs : int, default=1
744+ Number of jobs to run in parallel.
745745
746746 pre_dispatch : int, or string, optional
747747 Controls the number of jobs that get dispatched during parallel
@@ -760,7 +760,7 @@ class RandomizedSearchCV(BaseSearchCV):
760760 - A string, giving an expression as a function of n_jobs,
761761 as in '2*n_jobs'
762762
763- iid : boolean, optional
763+ iid : boolean, default=True
764764 If True, the data is assumed to be identically distributed across
765765 the folds, and the loss minimized is the total loss per sample,
766766 and not the mean loss across the folds.
@@ -770,7 +770,7 @@ class RandomizedSearchCV(BaseSearchCV):
770770 Specific cross-validation objects can be passed, see
771771 sklearn.cross_validation module for the list of possible objects
772772
773- refit : boolean
773+ refit : boolean, default=True
774774 Refit the best estimator with the entire dataset.
775775 If "False", it is impossible to make predictions using
776776 this RandomizedSearchCV instance after fitting.
@@ -800,7 +800,7 @@ class RandomizedSearchCV(BaseSearchCV):
800800 best_estimator_ : estimator
801801 Estimator that was chosen by the search, i.e. estimator
802802 which gave highest score (or smallest loss if specified)
803- on the left out data.
803+ on the left out data. Not available if refit=False.
804804
805805 best_score_ : float
806806 Score of best_estimator on the left out data.
0 commit comments