@@ -323,18 +323,20 @@ def _dense_predict(self, X):
323323 "the number of features at training time" %
324324 (n_features , self .shape_fit_ [1 ]))
325325
326- params = self .get_params ()
327- if 'scale_C' in params :
328- del params ['scale_C' ]
329- if "sparse" in params :
330- del params ["sparse" ]
326+ epsilon = self .epsilon
327+ if epsilon == None :
328+ epsilon = 0.1
331329
332330 svm_type = LIBSVM_IMPL .index (self .impl )
333331 return libsvm .predict (
334332 X , self .support_ , self .support_vectors_ , self .n_support_ ,
335333 self .dual_coef_ , self .intercept_ ,
336334 self .label_ , self .probA_ , self .probB_ ,
337- svm_type = svm_type , ** params )
335+ svm_type = svm_type ,
336+ kernel = self .kernel , C = self .C , nu = self .nu ,
337+ probability = self .probability , degree = self .degree ,
338+ shrinking = self .shrinking , tol = self .tol , cache_size = self .cache_size ,
339+ coef0 = self .coef0 , gamma = self .gamma , epsilon = epsilon )
338340
339341 def _sparse_predict (self , X ):
340342 X = sp .csr_matrix (X , dtype = np .float64 )
@@ -393,18 +395,19 @@ def predict_proba(self, X):
393395 def _dense_predict_proba (self , X ):
394396 X = self ._compute_kernel (X )
395397
396- params = self .get_params ()
397- if 'scale_C' in params :
398- del params ['scale_C' ]
399- if "sparse" in params :
400- del params ["sparse" ]
398+ epsilon = self .epsilon
399+ if epsilon == None :
400+ epsilon = 0.1
401401
402402 svm_type = LIBSVM_IMPL .index (self .impl )
403403 pprob = libsvm .predict_proba (
404404 X , self .support_ , self .support_vectors_ , self .n_support_ ,
405405 self .dual_coef_ , self .intercept_ , self .label_ ,
406406 self .probA_ , self .probB_ ,
407- svm_type = svm_type , ** params )
407+ svm_type = svm_type , kernel = self .kernel , C = self .C , nu = self .nu ,
408+ probability = self .probability , degree = self .degree ,
409+ shrinking = self .shrinking , tol = self .tol , cache_size = self .cache_size ,
410+ coef0 = self .coef0 , gamma = self .gamma , epsilon = epsilon )
408411
409412 return pprob
410413
@@ -478,18 +481,18 @@ def decision_function(self, X):
478481
479482 X = array2d (X , dtype = np .float64 , order = "C" )
480483
481- params = self .get_params ()
482- if 'scale_C' in params :
483- del params ['scale_C' ]
484- if "sparse" in params :
485- del params ["sparse" ]
486-
484+ epsilon = self .epsilon
485+ if epsilon == None :
486+ epsilon = 0.1
487487 dec_func = libsvm .decision_function (
488488 X , self .support_ , self .support_vectors_ , self .n_support_ ,
489489 self .dual_coef_ , self .intercept_ , self .label_ ,
490490 self .probA_ , self .probB_ ,
491491 svm_type = LIBSVM_IMPL .index (self .impl ),
492- ** params )
492+ kernel = self .kernel , C = self .C , nu = self .nu ,
493+ probability = self .probability , degree = self .degree ,
494+ shrinking = self .shrinking , tol = self .tol , cache_size = self .cache_size ,
495+ coef0 = self .coef0 , gamma = self .gamma , epsilon = epsilon )
493496
494497 return dec_func
495498
0 commit comments