@@ -555,7 +555,7 @@ def score_samples(self, X):
555555 return self .best_estimator_ .score_samples (X )
556556
557557 @available_if (_estimator_has ("predict" ))
558- def predict (self , X , ** params ):
558+ def predict (self , X ):
559559 """Call predict on the estimator with the best found parameters.
560560
561561 Only available if ``refit=True`` and the underlying estimator supports
@@ -567,27 +567,17 @@ def predict(self, X, **params):
567567 Must fulfill the input assumptions of the
568568 underlying estimator.
569569
570- **params : dict
571- Parameters to be passed the underlying estimator's ``predict``.
572-
573- Only available if `enable_metadata_routing=True`. See the
574- :ref:`User Guide <metadata_routing>`.
575-
576- ..versionadded:: 1.4
577-
578570 Returns
579571 -------
580572 y_pred : ndarray of shape (n_samples,)
581573 The predicted labels or values for `X` based on the estimator with
582574 the best found parameters.
583575 """
584576 check_is_fitted (self )
585- return self .best_estimator_ .predict (
586- X , ** _get_params_for_method (self , "predict" , params )
587- )
577+ return self .best_estimator_ .predict (X )
588578
589579 @available_if (_estimator_has ("predict_proba" ))
590- def predict_proba (self , X , ** params ):
580+ def predict_proba (self , X ):
591581 """Call predict_proba on the estimator with the best found parameters.
592582
593583 Only available if ``refit=True`` and the underlying estimator supports
@@ -599,14 +589,6 @@ def predict_proba(self, X, **params):
599589 Must fulfill the input assumptions of the
600590 underlying estimator.
601591
602- **params : dict
603- Parameters to be passed the underlying estimator's ``predict_proba``.
604-
605- Only available if `enable_metadata_routing=True`. See the
606- :ref:`User Guide <metadata_routing>`.
607-
608- ..versionadded:: 1.4
609-
610592 Returns
611593 -------
612594 y_pred : ndarray of shape (n_samples,) or (n_samples, n_classes)
@@ -615,12 +597,10 @@ def predict_proba(self, X, **params):
615597 to that in the fitted attribute :term:`classes_`.
616598 """
617599 check_is_fitted (self )
618- return self .best_estimator_ .predict_proba (
619- X , ** _get_params_for_method (self , "predict_proba" , params )
620- )
600+ return self .best_estimator_ .predict_proba (X )
621601
622602 @available_if (_estimator_has ("predict_log_proba" ))
623- def predict_log_proba (self , X , ** params ):
603+ def predict_log_proba (self , X ):
624604 """Call predict_log_proba on the estimator with the best found parameters.
625605
626606 Only available if ``refit=True`` and the underlying estimator supports
@@ -632,14 +612,6 @@ def predict_log_proba(self, X, **params):
632612 Must fulfill the input assumptions of the
633613 underlying estimator.
634614
635- **params : dict
636- Parameters to be passed the underlying estimator's ``predict_log_proba``.
637-
638- Only available if `enable_metadata_routing=True`. See the
639- :ref:`User Guide <metadata_routing>`.
640-
641- ..versionadded:: 1.4
642-
643615 Returns
644616 -------
645617 y_pred : ndarray of shape (n_samples,) or (n_samples, n_classes)
@@ -648,12 +620,10 @@ def predict_log_proba(self, X, **params):
648620 corresponds to that in the fitted attribute :term:`classes_`.
649621 """
650622 check_is_fitted (self )
651- return self .best_estimator_ .predict_log_proba (
652- X , ** _get_params_for_method (self , "predict_log_proba" , params )
653- )
623+ return self .best_estimator_ .predict_log_proba (X )
654624
655625 @available_if (_estimator_has ("decision_function" ))
656- def decision_function (self , X , ** params ):
626+ def decision_function (self , X ):
657627 """Call decision_function on the estimator with the best found parameters.
658628
659629 Only available if ``refit=True`` and the underlying estimator supports
@@ -665,14 +635,6 @@ def decision_function(self, X, **params):
665635 Must fulfill the input assumptions of the
666636 underlying estimator.
667637
668- **params : dict
669- Parameters to be passed the underlying estimator's ``decision_function``.
670-
671- Only available if `enable_metadata_routing=True`. See the
672- :ref:`User Guide <metadata_routing>`.
673-
674- ..versionadded:: 1.4
675-
676638 Returns
677639 -------
678640 y_score : ndarray of shape (n_samples,) or (n_samples, n_classes) \
@@ -681,12 +643,10 @@ def decision_function(self, X, **params):
681643 the best found parameters.
682644 """
683645 check_is_fitted (self )
684- return self .best_estimator_ .decision_function (
685- X , ** _get_params_for_method (self , "decision_function" , params )
686- )
646+ return self .best_estimator_ .decision_function (X )
687647
688648 @available_if (_estimator_has ("transform" ))
689- def transform (self , X , ** params ):
649+ def transform (self , X ):
690650 """Call transform on the estimator with the best found parameters.
691651
692652 Only available if the underlying estimator supports ``transform`` and
@@ -698,27 +658,17 @@ def transform(self, X, **params):
698658 Must fulfill the input assumptions of the
699659 underlying estimator.
700660
701- **params : dict
702- Parameters to be passed the underlying estimator's ``transform``.
703-
704- Only available if `enable_metadata_routing=True`. See the
705- :ref:`User Guide <metadata_routing>`.
706-
707- ..versionadded:: 1.4
708-
709661 Returns
710662 -------
711663 Xt : {ndarray, sparse matrix} of shape (n_samples, n_features)
712664 `X` transformed in the new space based on the estimator with
713665 the best found parameters.
714666 """
715667 check_is_fitted (self )
716- return self .best_estimator_ .transform (
717- X , ** _get_params_for_method (self , "transform" , params )
718- )
668+ return self .best_estimator_ .transform (X )
719669
720670 @available_if (_estimator_has ("inverse_transform" ))
721- def inverse_transform (self , Xt , ** params ):
671+ def inverse_transform (self , Xt ):
722672 """Call inverse_transform on the estimator with the best found params.
723673
724674 Only available if the underlying estimator implements
@@ -730,24 +680,14 @@ def inverse_transform(self, Xt, **params):
730680 Must fulfill the input assumptions of the
731681 underlying estimator.
732682
733- **params : dict
734- Parameters to be passed the underlying estimator's ``inverse_transform``.
735-
736- Only available if `enable_metadata_routing=True`. See the
737- :ref:`User Guide <metadata_routing>`.
738-
739- ..versionadded:: 1.4
740-
741683 Returns
742684 -------
743685 X : {ndarray, sparse matrix} of shape (n_samples, n_features)
744686 Result of the `inverse_transform` function for `Xt` based on the
745687 estimator with the best found parameters.
746688 """
747689 check_is_fitted (self )
748- return self .best_estimator_ .inverse_transform (
749- Xt , ** _get_params_for_method (self , "inverse_transform" , params )
750- )
690+ return self .best_estimator_ .inverse_transform (Xt )
751691
752692 @property
753693 def n_features_in_ (self ):
0 commit comments