-
-
Notifications
You must be signed in to change notification settings - Fork 25.7k
/
Copy path_pca.py
859 lines (719 loc) · 33.9 KB
/
_pca.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
"""Principal Component Analysis."""
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
from math import log, sqrt
from numbers import Integral, Real
import numpy as np
from scipy import linalg
from scipy.sparse import issparse
from scipy.sparse.linalg import svds
from scipy.special import gammaln
from ..base import _fit_context
from ..utils import check_random_state
from ..utils._arpack import _init_arpack_v0
from ..utils._array_api import _convert_to_numpy, get_namespace
from ..utils._param_validation import Interval, RealNotInt, StrOptions
from ..utils.extmath import fast_logdet, randomized_svd, stable_cumsum, svd_flip
from ..utils.sparsefuncs import _implicit_column_offset, mean_variance_axis
from ..utils.validation import check_is_fitted, validate_data
from ._base import _BasePCA
def _assess_dimension(spectrum, rank, n_samples):
"""Compute the log-likelihood of a rank ``rank`` dataset.
The dataset is assumed to be embedded in gaussian noise of shape(n,
dimf) having spectrum ``spectrum``. This implements the method of
T. P. Minka.
Parameters
----------
spectrum : ndarray of shape (n_features,)
Data spectrum.
rank : int
Tested rank value. It should be strictly lower than n_features,
otherwise the method isn't specified (division by zero in equation
(31) from the paper).
n_samples : int
Number of samples.
Returns
-------
ll : float
The log-likelihood.
References
----------
This implements the method of `Thomas P. Minka:
Automatic Choice of Dimensionality for PCA. NIPS 2000: 598-604
<https://proceedings.neurips.cc/paper/2000/file/7503cfacd12053d309b6bed5c89de212-Paper.pdf>`_
"""
xp, _ = get_namespace(spectrum)
n_features = spectrum.shape[0]
if not 1 <= rank < n_features:
raise ValueError("the tested rank should be in [1, n_features - 1]")
eps = 1e-15
if spectrum[rank - 1] < eps:
# When the tested rank is associated with a small eigenvalue, there's
# no point in computing the log-likelihood: it's going to be very
# small and won't be the max anyway. Also, it can lead to numerical
# issues below when computing pa, in particular in log((spectrum[i] -
# spectrum[j]) because this will take the log of something very small.
return -xp.inf
pu = -rank * log(2.0)
for i in range(1, rank + 1):
pu += (
gammaln((n_features - i + 1) / 2.0)
- log(xp.pi) * (n_features - i + 1) / 2.0
)
pl = xp.sum(xp.log(spectrum[:rank]))
pl = -pl * n_samples / 2.0
v = max(eps, xp.sum(spectrum[rank:]) / (n_features - rank))
pv = -log(v) * n_samples * (n_features - rank) / 2.0
m = n_features * rank - rank * (rank + 1.0) / 2.0
pp = log(2.0 * xp.pi) * (m + rank) / 2.0
pa = 0.0
spectrum_ = xp.asarray(spectrum, copy=True)
spectrum_[rank:n_features] = v
for i in range(rank):
for j in range(i + 1, spectrum.shape[0]):
pa += log(
(spectrum[i] - spectrum[j]) * (1.0 / spectrum_[j] - 1.0 / spectrum_[i])
) + log(n_samples)
ll = pu + pl + pv + pp - pa / 2.0 - rank * log(n_samples) / 2.0
return ll
def _infer_dimension(spectrum, n_samples):
"""Infers the dimension of a dataset with a given spectrum.
The returned value will be in [1, n_features - 1].
"""
xp, _ = get_namespace(spectrum)
ll = xp.empty_like(spectrum)
ll[0] = -xp.inf # we don't want to return n_components = 0
for rank in range(1, spectrum.shape[0]):
ll[rank] = _assess_dimension(spectrum, rank, n_samples)
return xp.argmax(ll)
class PCA(_BasePCA):
"""Principal component analysis (PCA).
Linear dimensionality reduction using Singular Value Decomposition of the
data to project it to a lower dimensional space. The input data is centered
but not scaled for each feature before applying the SVD.
It uses the LAPACK implementation of the full SVD or a randomized truncated
SVD by the method of Halko et al. 2009, depending on the shape of the input
data and the number of components to extract.
With sparse inputs, the ARPACK implementation of the truncated SVD can be
used (i.e. through :func:`scipy.sparse.linalg.svds`). Alternatively, one
may consider :class:`TruncatedSVD` where the data are not centered.
Notice that this class only supports sparse inputs for some solvers such as
"arpack" and "covariance_eigh". See :class:`TruncatedSVD` for an
alternative with sparse data.
For a usage example, see
:ref:`sphx_glr_auto_examples_decomposition_plot_pca_iris.py`
Read more in the :ref:`User Guide <PCA>`.
Parameters
----------
n_components : int, float or 'mle', default=None
Number of components to keep.
if n_components is not set all components are kept::
n_components == min(n_samples, n_features)
If ``n_components == 'mle'`` and ``svd_solver == 'full'``, Minka's
MLE is used to guess the dimension. Use of ``n_components == 'mle'``
will interpret ``svd_solver == 'auto'`` as ``svd_solver == 'full'``.
If ``0 < n_components < 1`` and ``svd_solver == 'full'``, select the
number of components such that the amount of variance that needs to be
explained is greater than the percentage specified by n_components.
If ``svd_solver == 'arpack'``, the number of components must be
strictly less than the minimum of n_features and n_samples.
Hence, the None case results in::
n_components == min(n_samples, n_features) - 1
copy : bool, default=True
If False, data passed to fit are overwritten and running
fit(X).transform(X) will not yield the expected results,
use fit_transform(X) instead.
whiten : bool, default=False
When True (False by default) the `components_` vectors are multiplied
by the square root of n_samples and then divided by the singular values
to ensure uncorrelated outputs with unit component-wise variances.
Whitening will remove some information from the transformed signal
(the relative variance scales of the components) but can sometime
improve the predictive accuracy of the downstream estimators by
making their data respect some hard-wired assumptions.
svd_solver : {'auto', 'full', 'covariance_eigh', 'arpack', 'randomized'},\
default='auto'
"auto" :
The solver is selected by a default 'auto' policy is based on `X.shape` and
`n_components`: if the input data has fewer than 1000 features and
more than 10 times as many samples, then the "covariance_eigh"
solver is used. Otherwise, if the input data is larger than 500x500
and the number of components to extract is lower than 80% of the
smallest dimension of the data, then the more efficient
"randomized" method is selected. Otherwise the exact "full" SVD is
computed and optionally truncated afterwards.
"full" :
Run exact full SVD calling the standard LAPACK solver via
`scipy.linalg.svd` and select the components by postprocessing
"covariance_eigh" :
Precompute the covariance matrix (on centered data), run a
classical eigenvalue decomposition on the covariance matrix
typically using LAPACK and select the components by postprocessing.
This solver is very efficient for n_samples >> n_features and small
n_features. It is, however, not tractable otherwise for large
n_features (large memory footprint required to materialize the
covariance matrix). Also note that compared to the "full" solver,
this solver effectively doubles the condition number and is
therefore less numerical stable (e.g. on input data with a large
range of singular values).
"arpack" :
Run SVD truncated to `n_components` calling ARPACK solver via
`scipy.sparse.linalg.svds`. It requires strictly
`0 < n_components < min(X.shape)`
"randomized" :
Run randomized SVD by the method of Halko et al.
.. versionadded:: 0.18.0
.. versionchanged:: 1.5
Added the 'covariance_eigh' solver.
tol : float, default=0.0
Tolerance for singular values computed by svd_solver == 'arpack'.
Must be of range [0.0, infinity).
.. versionadded:: 0.18.0
iterated_power : int or 'auto', default='auto'
Number of iterations for the power method computed by
svd_solver == 'randomized'.
Must be of range [0, infinity).
.. versionadded:: 0.18.0
n_oversamples : int, default=10
This parameter is only relevant when `svd_solver="randomized"`.
It corresponds to the additional number of random vectors to sample the
range of `X` so as to ensure proper conditioning. See
:func:`~sklearn.utils.extmath.randomized_svd` for more details.
.. versionadded:: 1.1
power_iteration_normalizer : {'auto', 'QR', 'LU', 'none'}, default='auto'
Power iteration normalizer for randomized SVD solver.
Not used by ARPACK. See :func:`~sklearn.utils.extmath.randomized_svd`
for more details.
.. versionadded:: 1.1
random_state : int, RandomState instance or None, default=None
Used when the 'arpack' or 'randomized' solvers are used. Pass an int
for reproducible results across multiple function calls.
See :term:`Glossary <random_state>`.
.. versionadded:: 0.18.0
Attributes
----------
components_ : ndarray of shape (n_components, n_features)
Principal axes in feature space, representing the directions of
maximum variance in the data. Equivalently, the right singular
vectors of the centered input data, parallel to its eigenvectors.
The components are sorted by decreasing ``explained_variance_``.
explained_variance_ : ndarray of shape (n_components,)
The amount of variance explained by each of the selected components.
The variance estimation uses `n_samples - 1` degrees of freedom.
Equal to n_components largest eigenvalues
of the covariance matrix of X.
.. versionadded:: 0.18
explained_variance_ratio_ : ndarray of shape (n_components,)
Percentage of variance explained by each of the selected components.
If ``n_components`` is not set then all components are stored and the
sum of the ratios is equal to 1.0.
singular_values_ : ndarray of shape (n_components,)
The singular values corresponding to each of the selected components.
The singular values are equal to the 2-norms of the ``n_components``
variables in the lower-dimensional space.
.. versionadded:: 0.19
mean_ : ndarray of shape (n_features,)
Per-feature empirical mean, estimated from the training set.
Equal to `X.mean(axis=0)`.
n_components_ : int
The estimated number of components. When n_components is set
to 'mle' or a number between 0 and 1 (with svd_solver == 'full') this
number is estimated from input data. Otherwise it equals the parameter
n_components, or the lesser value of n_features and n_samples
if n_components is None.
n_samples_ : int
Number of samples in the training data.
noise_variance_ : float
The estimated noise covariance following the Probabilistic PCA model
from Tipping and Bishop 1999. See "Pattern Recognition and
Machine Learning" by C. Bishop, 12.2.1 p. 574 or
http://www.miketipping.com/papers/met-mppca.pdf. It is required to
compute the estimated data covariance and score samples.
Equal to the average of (min(n_features, n_samples) - n_components)
smallest eigenvalues of the covariance matrix of X.
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
See Also
--------
KernelPCA : Kernel Principal Component Analysis.
SparsePCA : Sparse Principal Component Analysis.
TruncatedSVD : Dimensionality reduction using truncated SVD.
IncrementalPCA : Incremental Principal Component Analysis.
References
----------
For n_components == 'mle', this class uses the method from:
`Minka, T. P.. "Automatic choice of dimensionality for PCA".
In NIPS, pp. 598-604 <https://tminka.github.io/papers/pca/minka-pca.pdf>`_
Implements the probabilistic PCA model from:
`Tipping, M. E., and Bishop, C. M. (1999). "Probabilistic principal
component analysis". Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 61(3), 611-622.
<http://www.miketipping.com/papers/met-mppca.pdf>`_
via the score and score_samples methods.
For svd_solver == 'arpack', refer to `scipy.sparse.linalg.svds`.
For svd_solver == 'randomized', see:
:doi:`Halko, N., Martinsson, P. G., and Tropp, J. A. (2011).
"Finding structure with randomness: Probabilistic algorithms for
constructing approximate matrix decompositions".
SIAM review, 53(2), 217-288.
<10.1137/090771806>`
and also
:doi:`Martinsson, P. G., Rokhlin, V., and Tygert, M. (2011).
"A randomized algorithm for the decomposition of matrices".
Applied and Computational Harmonic Analysis, 30(1), 47-68.
<10.1016/j.acha.2010.02.003>`
Examples
--------
>>> import numpy as np
>>> from sklearn.decomposition import PCA
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> pca = PCA(n_components=2)
>>> pca.fit(X)
PCA(n_components=2)
>>> print(pca.explained_variance_ratio_)
[0.9924... 0.0075...]
>>> print(pca.singular_values_)
[6.30061... 0.54980...]
>>> pca = PCA(n_components=2, svd_solver='full')
>>> pca.fit(X)
PCA(n_components=2, svd_solver='full')
>>> print(pca.explained_variance_ratio_)
[0.9924... 0.00755...]
>>> print(pca.singular_values_)
[6.30061... 0.54980...]
>>> pca = PCA(n_components=1, svd_solver='arpack')
>>> pca.fit(X)
PCA(n_components=1, svd_solver='arpack')
>>> print(pca.explained_variance_ratio_)
[0.99244...]
>>> print(pca.singular_values_)
[6.30061...]
"""
_parameter_constraints: dict = {
"n_components": [
Interval(Integral, 0, None, closed="left"),
Interval(RealNotInt, 0, 1, closed="neither"),
StrOptions({"mle"}),
None,
],
"copy": ["boolean"],
"whiten": ["boolean"],
"svd_solver": [
StrOptions({"auto", "full", "covariance_eigh", "arpack", "randomized"})
],
"tol": [Interval(Real, 0, None, closed="left")],
"iterated_power": [
StrOptions({"auto"}),
Interval(Integral, 0, None, closed="left"),
],
"n_oversamples": [Interval(Integral, 1, None, closed="left")],
"power_iteration_normalizer": [StrOptions({"auto", "QR", "LU", "none"})],
"random_state": ["random_state"],
}
def __init__(
self,
n_components=None,
*,
copy=True,
whiten=False,
svd_solver="auto",
tol=0.0,
iterated_power="auto",
n_oversamples=10,
power_iteration_normalizer="auto",
random_state=None,
):
self.n_components = n_components
self.copy = copy
self.whiten = whiten
self.svd_solver = svd_solver
self.tol = tol
self.iterated_power = iterated_power
self.n_oversamples = n_oversamples
self.power_iteration_normalizer = power_iteration_normalizer
self.random_state = random_state
@_fit_context(prefer_skip_nested_validation=True)
def fit(self, X, y=None):
"""Fit the model with X.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Training data, where `n_samples` is the number of samples
and `n_features` is the number of features.
y : Ignored
Ignored.
Returns
-------
self : object
Returns the instance itself.
"""
self._fit(X)
return self
@_fit_context(prefer_skip_nested_validation=True)
def fit_transform(self, X, y=None):
"""Fit the model with X and apply the dimensionality reduction on X.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Training data, where `n_samples` is the number of samples
and `n_features` is the number of features.
y : Ignored
Ignored.
Returns
-------
X_new : ndarray of shape (n_samples, n_components)
Transformed values.
Notes
-----
This method returns a Fortran-ordered array. To convert it to a
C-ordered array, use 'np.ascontiguousarray'.
"""
U, S, _, X, x_is_centered, xp = self._fit(X)
if U is not None:
U = U[:, : self.n_components_]
if self.whiten:
# X_new = X * V / S * sqrt(n_samples) = U * sqrt(n_samples)
U *= sqrt(X.shape[0] - 1)
else:
# X_new = X * V = U * S * Vt * V = U * S
U *= S[: self.n_components_]
return U
else: # solver="covariance_eigh" does not compute U at fit time.
return self._transform(X, xp, x_is_centered=x_is_centered)
def _fit(self, X):
"""Dispatch to the right submethod depending on the chosen solver."""
xp, is_array_api_compliant = get_namespace(X)
# Raise an error for sparse input and unsupported svd_solver
if issparse(X) and self.svd_solver not in ["auto", "arpack", "covariance_eigh"]:
raise TypeError(
'PCA only support sparse inputs with the "arpack" and'
f' "covariance_eigh" solvers, while "{self.svd_solver}" was passed. See'
" TruncatedSVD for a possible alternative."
)
if self.svd_solver == "arpack" and is_array_api_compliant:
raise ValueError(
"PCA with svd_solver='arpack' is not supported for Array API inputs."
)
# Validate the data, without ever forcing a copy as any solver that
# supports sparse input data and the `covariance_eigh` solver are
# written in a way to avoid the need for any inplace modification of
# the input data contrary to the other solvers.
# The copy will happen
# later, only if needed, once the solver negotiation below is done.
X = validate_data(
self,
X,
dtype=[xp.float64, xp.float32],
force_writeable=True,
accept_sparse=("csr", "csc"),
ensure_2d=True,
copy=False,
)
self._fit_svd_solver = self.svd_solver
if self._fit_svd_solver == "auto" and issparse(X):
self._fit_svd_solver = "arpack"
if self.n_components is None:
if self._fit_svd_solver != "arpack":
n_components = min(X.shape)
else:
n_components = min(X.shape) - 1
else:
n_components = self.n_components
if self._fit_svd_solver == "auto":
# Tall and skinny problems are best handled by precomputing the
# covariance matrix.
if X.shape[1] <= 1_000 and X.shape[0] >= 10 * X.shape[1]:
self._fit_svd_solver = "covariance_eigh"
# Small problem or n_components == 'mle', just call full PCA
elif max(X.shape) <= 500 or n_components == "mle":
self._fit_svd_solver = "full"
elif 1 <= n_components < 0.8 * min(X.shape):
self._fit_svd_solver = "randomized"
# This is also the case of n_components in (0, 1)
else:
self._fit_svd_solver = "full"
# Call different fits for either full or truncated SVD
if self._fit_svd_solver in ("full", "covariance_eigh"):
return self._fit_full(X, n_components, xp, is_array_api_compliant)
elif self._fit_svd_solver in ["arpack", "randomized"]:
return self._fit_truncated(X, n_components, xp)
def _fit_full(self, X, n_components, xp, is_array_api_compliant):
"""Fit the model by computing full SVD on X."""
n_samples, n_features = X.shape
if n_components == "mle":
if n_samples < n_features:
raise ValueError(
"n_components='mle' is only supported if n_samples >= n_features"
)
elif not 0 <= n_components <= min(n_samples, n_features):
raise ValueError(
f"n_components={n_components} must be between 0 and "
f"min(n_samples, n_features)={min(n_samples, n_features)} with "
f"svd_solver={self._fit_svd_solver!r}"
)
self.mean_ = xp.mean(X, axis=0)
# When X is a scipy sparse matrix, self.mean_ is a numpy matrix, so we need
# to transform it to a 1D array. Note that this is not the case when X
# is a scipy sparse array.
# TODO: remove the following two lines when scikit-learn only depends
# on scipy versions that no longer support scipy.sparse matrices.
self.mean_ = xp.reshape(xp.asarray(self.mean_), (-1,))
if self._fit_svd_solver == "full":
X_centered = xp.asarray(X, copy=True) if self.copy else X
X_centered -= self.mean_
x_is_centered = not self.copy
if not is_array_api_compliant:
# Use scipy.linalg with NumPy/SciPy inputs for the sake of not
# introducing unanticipated behavior changes. In the long run we
# could instead decide to always use xp.linalg.svd for all inputs,
# but that would make this code rely on numpy's SVD instead of
# scipy's. It's not 100% clear whether they use the same LAPACK
# solver by default though (assuming both are built against the
# same BLAS).
U, S, Vt = linalg.svd(X_centered, full_matrices=False)
else:
U, S, Vt = xp.linalg.svd(X_centered, full_matrices=False)
explained_variance_ = (S**2) / (n_samples - 1)
else:
assert self._fit_svd_solver == "covariance_eigh"
# In the following, we center the covariance matrix C afterwards
# (without centering the data X first) to avoid an unnecessary copy
# of X. Note that the mean_ attribute is still needed to center
# test data in the transform method.
#
# Note: at the time of writing, `xp.cov` does not exist in the
# Array API standard:
# https://github.com/data-apis/array-api/issues/43
#
# Besides, using `numpy.cov`, as of numpy 1.26.0, would not be
# memory efficient for our use case when `n_samples >> n_features`:
# `numpy.cov` centers a copy of the data before computing the
# matrix product instead of subtracting a small `(n_features,
# n_features)` square matrix from the gram matrix X.T @ X, as we do
# below.
x_is_centered = False
C = X.T @ X
C -= (
n_samples
* xp.reshape(self.mean_, (-1, 1))
* xp.reshape(self.mean_, (1, -1))
)
C /= n_samples - 1
eigenvals, eigenvecs = xp.linalg.eigh(C)
# When X is a scipy sparse matrix, the following two datastructures
# are returned as instances of the soft-deprecated numpy.matrix
# class. Note that this problem does not occur when X is a scipy
# sparse array (or another other kind of supported array).
# TODO: remove the following two lines when scikit-learn only
# depends on scipy versions that no longer support scipy.sparse
# matrices.
eigenvals = xp.reshape(xp.asarray(eigenvals), (-1,))
eigenvecs = xp.asarray(eigenvecs)
eigenvals = xp.flip(eigenvals, axis=0)
eigenvecs = xp.flip(eigenvecs, axis=1)
# The covariance matrix C is positive semi-definite by
# construction. However, the eigenvalues returned by xp.linalg.eigh
# can be slightly negative due to numerical errors. This would be
# an issue for the subsequent sqrt, hence the manual clipping.
eigenvals[eigenvals < 0.0] = 0.0
explained_variance_ = eigenvals
# Re-construct SVD of centered X indirectly and make it consistent
# with the other solvers.
S = xp.sqrt(eigenvals * (n_samples - 1))
Vt = eigenvecs.T
U = None
# flip eigenvectors' sign to enforce deterministic output
U, Vt = svd_flip(U, Vt, u_based_decision=False)
components_ = Vt
# Get variance explained by singular values
total_var = xp.sum(explained_variance_)
explained_variance_ratio_ = explained_variance_ / total_var
singular_values_ = xp.asarray(S, copy=True) # Store the singular values.
# Postprocess the number of components required
if n_components == "mle":
n_components = _infer_dimension(explained_variance_, n_samples)
elif 0 < n_components < 1.0:
# number of components for which the cumulated explained
# variance percentage is superior to the desired threshold
# side='right' ensures that number of features selected
# their variance is always greater than n_components float
# passed. More discussion in issue: #15669
if is_array_api_compliant:
# Convert to numpy as xp.cumsum and xp.searchsorted are not
# part of the Array API standard yet:
#
# https://github.com/data-apis/array-api/issues/597
# https://github.com/data-apis/array-api/issues/688
#
# Furthermore, it's not always safe to call them for namespaces
# that already implement them: for instance as
# cupy.searchsorted does not accept a float as second argument.
explained_variance_ratio_np = _convert_to_numpy(
explained_variance_ratio_, xp=xp
)
else:
explained_variance_ratio_np = explained_variance_ratio_
ratio_cumsum = stable_cumsum(explained_variance_ratio_np)
n_components = np.searchsorted(ratio_cumsum, n_components, side="right") + 1
# Compute noise covariance using Probabilistic PCA model
# The sigma2 maximum likelihood (cf. eq. 12.46)
if n_components < min(n_features, n_samples):
self.noise_variance_ = xp.mean(explained_variance_[n_components:])
else:
self.noise_variance_ = 0.0
self.n_samples_ = n_samples
self.n_components_ = n_components
# Assign a copy of the result of the truncation of the components in
# order to:
# - release the memory used by the discarded components,
# - ensure that the kept components are allocated contiguously in
# memory to make the transform method faster by leveraging cache
# locality.
self.components_ = xp.asarray(components_[:n_components, :], copy=True)
# We do the same for the other arrays for the sake of consistency.
self.explained_variance_ = xp.asarray(
explained_variance_[:n_components], copy=True
)
self.explained_variance_ratio_ = xp.asarray(
explained_variance_ratio_[:n_components], copy=True
)
self.singular_values_ = xp.asarray(singular_values_[:n_components], copy=True)
return U, S, Vt, X, x_is_centered, xp
def _fit_truncated(self, X, n_components, xp):
"""Fit the model by computing truncated SVD (by ARPACK or randomized)
on X.
"""
n_samples, n_features = X.shape
svd_solver = self._fit_svd_solver
if isinstance(n_components, str):
raise ValueError(
"n_components=%r cannot be a string with svd_solver='%s'"
% (n_components, svd_solver)
)
elif not 1 <= n_components <= min(n_samples, n_features):
raise ValueError(
"n_components=%r must be between 1 and "
"min(n_samples, n_features)=%r with "
"svd_solver='%s'"
% (n_components, min(n_samples, n_features), svd_solver)
)
elif svd_solver == "arpack" and n_components == min(n_samples, n_features):
raise ValueError(
"n_components=%r must be strictly less than "
"min(n_samples, n_features)=%r with "
"svd_solver='%s'"
% (n_components, min(n_samples, n_features), svd_solver)
)
random_state = check_random_state(self.random_state)
# Center data
total_var = None
if issparse(X):
self.mean_, var = mean_variance_axis(X, axis=0)
total_var = var.sum() * n_samples / (n_samples - 1) # ddof=1
X_centered = _implicit_column_offset(X, self.mean_)
x_is_centered = False
else:
self.mean_ = xp.mean(X, axis=0)
X_centered = xp.asarray(X, copy=True) if self.copy else X
X_centered -= self.mean_
x_is_centered = not self.copy
if svd_solver == "arpack":
v0 = _init_arpack_v0(min(X.shape), random_state)
U, S, Vt = svds(X_centered, k=n_components, tol=self.tol, v0=v0)
# svds doesn't abide by scipy.linalg.svd/randomized_svd
# conventions, so reverse its outputs.
S = S[::-1]
# flip eigenvectors' sign to enforce deterministic output
U, Vt = svd_flip(U[:, ::-1], Vt[::-1], u_based_decision=False)
elif svd_solver == "randomized":
# sign flipping is done inside
U, S, Vt = randomized_svd(
X_centered,
n_components=n_components,
n_oversamples=self.n_oversamples,
n_iter=self.iterated_power,
power_iteration_normalizer=self.power_iteration_normalizer,
flip_sign=False,
random_state=random_state,
)
U, Vt = svd_flip(U, Vt, u_based_decision=False)
self.n_samples_ = n_samples
self.components_ = Vt
self.n_components_ = n_components
# Get variance explained by singular values
self.explained_variance_ = (S**2) / (n_samples - 1)
# Workaround in-place variance calculation since at the time numpy
# did not have a way to calculate variance in-place.
#
# TODO: update this code to either:
# * Use the array-api variance calculation, unless memory usage suffers
# * Update sklearn.utils.extmath._incremental_mean_and_var to support array-api
# See: https://github.com/scikit-learn/scikit-learn/pull/18689#discussion_r1335540991
if total_var is None:
N = X.shape[0] - 1
X_centered **= 2
total_var = xp.sum(X_centered) / N
self.explained_variance_ratio_ = self.explained_variance_ / total_var
self.singular_values_ = xp.asarray(S, copy=True) # Store the singular values.
if self.n_components_ < min(n_features, n_samples):
self.noise_variance_ = total_var - xp.sum(self.explained_variance_)
self.noise_variance_ /= min(n_features, n_samples) - n_components
else:
self.noise_variance_ = 0.0
return U, S, Vt, X, x_is_centered, xp
def score_samples(self, X):
"""Return the log-likelihood of each sample.
See. "Pattern Recognition and Machine Learning"
by C. Bishop, 12.2.1 p. 574
or http://www.miketipping.com/papers/met-mppca.pdf
Parameters
----------
X : array-like of shape (n_samples, n_features)
The data.
Returns
-------
ll : ndarray of shape (n_samples,)
Log-likelihood of each sample under the current model.
"""
check_is_fitted(self)
xp, _ = get_namespace(X)
X = validate_data(self, X, dtype=[xp.float64, xp.float32], reset=False)
Xr = X - self.mean_
n_features = X.shape[1]
precision = self.get_precision()
log_like = -0.5 * xp.sum(Xr * (Xr @ precision), axis=1)
log_like -= 0.5 * (n_features * log(2.0 * np.pi) - fast_logdet(precision))
return log_like
def score(self, X, y=None):
"""Return the average log-likelihood of all samples.
See. "Pattern Recognition and Machine Learning"
by C. Bishop, 12.2.1 p. 574
or http://www.miketipping.com/papers/met-mppca.pdf
Parameters
----------
X : array-like of shape (n_samples, n_features)
The data.
y : Ignored
Ignored.
Returns
-------
ll : float
Average log-likelihood of the samples under the current model.
"""
xp, _ = get_namespace(X)
return float(xp.mean(self.score_samples(X)))
def __sklearn_tags__(self):
tags = super().__sklearn_tags__()
tags.transformer_tags.preserves_dtype = ["float64", "float32"]
tags.array_api_support = True
tags.input_tags.sparse = self.svd_solver in (
"auto",
"arpack",
"covariance_eigh",
)
return tags