-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathnon_canonical_impls.rs
301 lines (287 loc) · 11.1 KB
/
non_canonical_impls.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
use clippy_utils::diagnostics::{span_lint_and_sugg, span_lint_and_then};
use clippy_utils::ty::implements_trait;
use clippy_utils::{is_from_proc_macro, is_res_lang_ctor, last_path_segment, path_res, std_or_core};
use rustc_errors::Applicability;
use rustc_hir::def_id::LocalDefId;
use rustc_hir::{Expr, ExprKind, ImplItem, ImplItemKind, LangItem, Node, UnOp};
use rustc_lint::{LateContext, LateLintPass, LintContext};
use rustc_middle::ty::EarlyBinder;
use rustc_session::declare_lint_pass;
use rustc_span::sym;
use rustc_span::symbol::kw;
declare_clippy_lint! {
/// ### What it does
/// Checks for non-canonical implementations of `Clone` when `Copy` is already implemented.
///
/// ### Why is this bad?
/// If both `Clone` and `Copy` are implemented, they must agree. This can done by dereferencing
/// `self` in `Clone`'s implementation, which will avoid any possibility of the implementations
/// becoming out of sync.
///
/// ### Example
/// ```rust,ignore
/// #[derive(Eq, PartialEq)]
/// struct A(u32);
///
/// impl Clone for A {
/// fn clone(&self) -> Self {
/// Self(self.0)
/// }
/// }
///
/// impl Copy for A {}
/// ```
/// Use instead:
/// ```rust,ignore
/// #[derive(Eq, PartialEq)]
/// struct A(u32);
///
/// impl Clone for A {
/// fn clone(&self) -> Self {
/// *self
/// }
/// }
///
/// impl Copy for A {}
/// ```
#[clippy::version = "1.72.0"]
pub NON_CANONICAL_CLONE_IMPL,
suspicious,
"non-canonical implementation of `Clone` on a `Copy` type"
}
declare_clippy_lint! {
/// ### What it does
/// Checks for non-canonical implementations of `PartialOrd` when `Ord` is already implemented.
///
/// ### Why is this bad?
/// If both `PartialOrd` and `Ord` are implemented, they must agree. This is commonly done by
/// wrapping the result of `cmp` in `Some` for `partial_cmp`. Not doing this may silently
/// introduce an error upon refactoring.
///
/// ### Known issues
/// Code that calls the `.into()` method instead will be flagged, despite `.into()` wrapping it
/// in `Some`.
///
/// ### Example
/// ```no_run
/// # use std::cmp::Ordering;
/// #[derive(Eq, PartialEq)]
/// struct A(u32);
///
/// impl Ord for A {
/// fn cmp(&self, other: &Self) -> Ordering {
/// // ...
/// # todo!();
/// }
/// }
///
/// impl PartialOrd for A {
/// fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
/// // ...
/// # todo!();
/// }
/// }
/// ```
/// Use instead:
/// ```no_run
/// # use std::cmp::Ordering;
/// #[derive(Eq, PartialEq)]
/// struct A(u32);
///
/// impl Ord for A {
/// fn cmp(&self, other: &Self) -> Ordering {
/// // ...
/// # todo!();
/// }
/// }
///
/// impl PartialOrd for A {
/// fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
/// Some(self.cmp(other))
/// }
/// }
/// ```
#[clippy::version = "1.73.0"]
pub NON_CANONICAL_PARTIAL_ORD_IMPL,
suspicious,
"non-canonical implementation of `PartialOrd` on an `Ord` type"
}
declare_lint_pass!(NonCanonicalImpls => [NON_CANONICAL_CLONE_IMPL, NON_CANONICAL_PARTIAL_ORD_IMPL]);
impl LateLintPass<'_> for NonCanonicalImpls {
#[expect(clippy::too_many_lines)]
fn check_impl_item<'tcx>(&mut self, cx: &LateContext<'tcx>, impl_item: &ImplItem<'tcx>) {
let Node::Item(item) = cx.tcx.parent_hir_node(impl_item.hir_id()) else {
return;
};
let Some(trait_impl) = cx.tcx.impl_trait_ref(item.owner_id).map(EarlyBinder::skip_binder) else {
return;
};
if cx.tcx.is_automatically_derived(item.owner_id.to_def_id()) {
return;
}
let ImplItemKind::Fn(_, impl_item_id) = cx.tcx.hir_impl_item(impl_item.impl_item_id()).kind else {
return;
};
let body = cx.tcx.hir_body(impl_item_id);
let ExprKind::Block(block, ..) = body.value.kind else {
return;
};
if block.span.in_external_macro(cx.sess().source_map()) || is_from_proc_macro(cx, impl_item) {
return;
}
if cx.tcx.is_diagnostic_item(sym::Clone, trait_impl.def_id)
&& let Some(copy_def_id) = cx.tcx.get_diagnostic_item(sym::Copy)
&& implements_trait(cx, trait_impl.self_ty(), copy_def_id, &[])
{
if impl_item.ident.name == sym::clone {
if block.stmts.is_empty()
&& let Some(expr) = block.expr
&& let ExprKind::Unary(UnOp::Deref, deref) = expr.kind
&& let ExprKind::Path(qpath) = deref.kind
&& last_path_segment(&qpath).ident.name == kw::SelfLower
{
} else {
span_lint_and_sugg(
cx,
NON_CANONICAL_CLONE_IMPL,
block.span,
"non-canonical implementation of `clone` on a `Copy` type",
"change this to",
"{ *self }".to_owned(),
Applicability::MaybeIncorrect,
);
return;
}
}
if impl_item.ident.name == sym::clone_from {
span_lint_and_sugg(
cx,
NON_CANONICAL_CLONE_IMPL,
impl_item.span,
"unnecessary implementation of `clone_from` on a `Copy` type",
"remove it",
String::new(),
Applicability::MaybeIncorrect,
);
return;
}
}
if cx.tcx.is_diagnostic_item(sym::PartialOrd, trait_impl.def_id)
&& impl_item.ident.name == sym::partial_cmp
&& let Some(ord_def_id) = cx.tcx.get_diagnostic_item(sym::Ord)
&& implements_trait(cx, trait_impl.self_ty(), ord_def_id, &[])
{
// If the `cmp` call likely needs to be fully qualified in the suggestion
// (like `std::cmp::Ord::cmp`). It's unfortunate we must put this here but we can't
// access `cmp_expr` in the suggestion without major changes, as we lint in `else`.
let mut needs_fully_qualified = false;
if block.stmts.is_empty()
&& let Some(expr) = block.expr
&& expr_is_cmp(cx, &expr.kind, impl_item, &mut needs_fully_qualified)
{
}
// Fix #12683, allow [`needless_return`] here
else if block.expr.is_none()
&& let Some(stmt) = block.stmts.first()
&& let rustc_hir::StmtKind::Semi(Expr {
kind: ExprKind::Ret(Some(Expr { kind: ret_kind, .. })),
..
}) = stmt.kind
&& expr_is_cmp(cx, ret_kind, impl_item, &mut needs_fully_qualified)
{
} else {
// If `Self` and `Rhs` are not the same type, bail. This makes creating a valid
// suggestion tons more complex.
if let [lhs, rhs, ..] = trait_impl.args.as_slice()
&& lhs != rhs
{
return;
}
span_lint_and_then(
cx,
NON_CANONICAL_PARTIAL_ORD_IMPL,
item.span,
"non-canonical implementation of `partial_cmp` on an `Ord` type",
|diag| {
let [_, other] = body.params else {
return;
};
let Some(std_or_core) = std_or_core(cx) else {
return;
};
let suggs = match (other.pat.simple_ident(), needs_fully_qualified) {
(Some(other_ident), true) => vec![(
block.span,
format!("{{ Some({std_or_core}::cmp::Ord::cmp(self, {})) }}", other_ident.name),
)],
(Some(other_ident), false) => {
vec![(block.span, format!("{{ Some(self.cmp({})) }}", other_ident.name))]
},
(None, true) => vec![
(
block.span,
format!("{{ Some({std_or_core}::cmp::Ord::cmp(self, other)) }}"),
),
(other.pat.span, "other".to_owned()),
],
(None, false) => vec![
(block.span, "{ Some(self.cmp(other)) }".to_owned()),
(other.pat.span, "other".to_owned()),
],
};
diag.multipart_suggestion("change this to", suggs, Applicability::Unspecified);
},
);
}
}
}
}
/// Return true if `expr_kind` is a `cmp` call.
fn expr_is_cmp<'tcx>(
cx: &LateContext<'tcx>,
expr_kind: &'tcx ExprKind<'tcx>,
impl_item: &ImplItem<'_>,
needs_fully_qualified: &mut bool,
) -> bool {
if let ExprKind::Call(
Expr {
kind: ExprKind::Path(some_path),
hir_id: some_hir_id,
..
},
[cmp_expr],
) = expr_kind
{
is_res_lang_ctor(cx, cx.qpath_res(some_path, *some_hir_id), LangItem::OptionSome)
// Fix #11178, allow `Self::cmp(self, ..)` too
&& self_cmp_call(cx, cmp_expr, impl_item.owner_id.def_id, needs_fully_qualified)
} else {
false
}
}
/// Returns whether this is any of `self.cmp(..)`, `Self::cmp(self, ..)` or `Ord::cmp(self, ..)`.
fn self_cmp_call<'tcx>(
cx: &LateContext<'tcx>,
cmp_expr: &'tcx Expr<'tcx>,
def_id: LocalDefId,
needs_fully_qualified: &mut bool,
) -> bool {
match cmp_expr.kind {
ExprKind::Call(path, [_, _]) => path_res(cx, path)
.opt_def_id()
.is_some_and(|def_id| cx.tcx.is_diagnostic_item(sym::ord_cmp_method, def_id)),
ExprKind::MethodCall(_, _, [_other], ..) => {
// We can set this to true here no matter what as if it's a `MethodCall` and goes to the
// `else` branch, it must be a method named `cmp` that isn't `Ord::cmp`
*needs_fully_qualified = true;
// It's a bit annoying but `typeck_results` only gives us the CURRENT body, which we
// have none, not of any `LocalDefId` we want, so we must call the query itself to avoid
// an immediate ICE
cx.tcx
.typeck(def_id)
.type_dependent_def_id(cmp_expr.hir_id)
.is_some_and(|def_id| cx.tcx.is_diagnostic_item(sym::ord_cmp_method, def_id))
},
_ => false,
}
}