-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathiter_without_into_iter.rs
269 lines (258 loc) · 11.2 KB
/
iter_without_into_iter.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
use clippy_utils::diagnostics::span_lint_and_then;
use clippy_utils::get_parent_as_impl;
use clippy_utils::source::snippet;
use clippy_utils::ty::{deref_chain, get_adt_inherent_method, implements_trait, make_normalized_projection};
use rustc_ast::Mutability;
use rustc_errors::Applicability;
use rustc_hir::{FnRetTy, ImplItemKind, ImplicitSelfKind, ItemKind, TyKind};
use rustc_lint::{LateContext, LateLintPass, LintContext};
use rustc_middle::ty::{self, Ty};
use rustc_session::declare_lint_pass;
use rustc_span::sym;
declare_clippy_lint! {
/// ### What it does
/// Looks for `iter` and `iter_mut` methods without an associated `IntoIterator for (&|&mut) Type` implementation.
///
/// ### Why is this bad?
/// It's not bad, but having them is idiomatic and allows the type to be used in for loops directly
/// (`for val in &iter {}`), without having to first call `iter()` or `iter_mut()`.
///
/// ### Limitations
/// This lint focuses on providing an idiomatic API. Therefore, it will only
/// lint on types which are accessible outside of the crate. For internal types,
/// the `IntoIterator` trait can be implemented on demand if it is actually needed.
///
/// ### Example
/// ```no_run
/// struct MySlice<'a>(&'a [u8]);
/// impl<'a> MySlice<'a> {
/// pub fn iter(&self) -> std::slice::Iter<'a, u8> {
/// self.0.iter()
/// }
/// }
/// ```
/// Use instead:
/// ```no_run
/// struct MySlice<'a>(&'a [u8]);
/// impl<'a> MySlice<'a> {
/// pub fn iter(&self) -> std::slice::Iter<'a, u8> {
/// self.0.iter()
/// }
/// }
/// impl<'a> IntoIterator for &MySlice<'a> {
/// type Item = &'a u8;
/// type IntoIter = std::slice::Iter<'a, u8>;
/// fn into_iter(self) -> Self::IntoIter {
/// self.iter()
/// }
/// }
/// ```
#[clippy::version = "1.75.0"]
pub ITER_WITHOUT_INTO_ITER,
pedantic,
"implementing `iter(_mut)` without an associated `IntoIterator for (&|&mut) Type` impl"
}
declare_clippy_lint! {
/// ### What it does
/// This is the opposite of the `iter_without_into_iter` lint.
/// It looks for `IntoIterator for (&|&mut) Type` implementations without an inherent `iter` or `iter_mut` method
/// on the type or on any of the types in its `Deref` chain.
///
/// ### Why is this bad?
/// It's not bad, but having them is idiomatic and allows the type to be used in iterator chains
/// by just calling `.iter()`, instead of the more awkward `<&Type>::into_iter` or `(&val).into_iter()` syntax
/// in case of ambiguity with another `IntoIterator` impl.
///
/// ### Limitations
/// This lint focuses on providing an idiomatic API. Therefore, it will only
/// lint on types which are accessible outside of the crate. For internal types,
/// these methods can be added on demand if they are actually needed. Otherwise,
/// it would trigger the [`dead_code`] lint for the unused method.
///
/// [`dead_code`]: https://doc.rust-lang.org/rustc/lints/listing/warn-by-default.html#dead-code
///
/// ### Example
/// ```no_run
/// struct MySlice<'a>(&'a [u8]);
/// impl<'a> IntoIterator for &MySlice<'a> {
/// type Item = &'a u8;
/// type IntoIter = std::slice::Iter<'a, u8>;
/// fn into_iter(self) -> Self::IntoIter {
/// self.0.iter()
/// }
/// }
/// ```
/// Use instead:
/// ```no_run
/// struct MySlice<'a>(&'a [u8]);
/// impl<'a> MySlice<'a> {
/// pub fn iter(&self) -> std::slice::Iter<'a, u8> {
/// self.into_iter()
/// }
/// }
/// impl<'a> IntoIterator for &MySlice<'a> {
/// type Item = &'a u8;
/// type IntoIter = std::slice::Iter<'a, u8>;
/// fn into_iter(self) -> Self::IntoIter {
/// self.0.iter()
/// }
/// }
/// ```
#[clippy::version = "1.75.0"]
pub INTO_ITER_WITHOUT_ITER,
pedantic,
"implementing `IntoIterator for (&|&mut) Type` without an inherent `iter(_mut)` method"
}
declare_lint_pass!(IterWithoutIntoIter => [ITER_WITHOUT_INTO_ITER, INTO_ITER_WITHOUT_ITER]);
/// Checks if a given type is nameable in a trait (impl).
/// RPIT is stable, but impl Trait in traits is not (yet), so when we have
/// a function such as `fn iter(&self) -> impl IntoIterator`, we can't
/// suggest `type IntoIter = impl IntoIterator`.
fn is_nameable_in_impl_trait(ty: &rustc_hir::Ty<'_>) -> bool {
!matches!(ty.kind, TyKind::OpaqueDef(..))
}
fn is_ty_exported(cx: &LateContext<'_>, ty: Ty<'_>) -> bool {
ty.ty_adt_def()
.and_then(|adt| adt.did().as_local())
.is_some_and(|did| cx.effective_visibilities.is_exported(did))
}
impl LateLintPass<'_> for IterWithoutIntoIter {
fn check_item(&mut self, cx: &LateContext<'_>, item: &rustc_hir::Item<'_>) {
if let ItemKind::Impl(imp) = item.kind
&& let TyKind::Ref(_, self_ty_without_ref) = &imp.self_ty.kind
&& let Some(trait_ref) = imp.of_trait
&& trait_ref
.trait_def_id()
.is_some_and(|did| cx.tcx.is_diagnostic_item(sym::IntoIterator, did))
&& !item.span.in_external_macro(cx.sess().source_map())
&& let &ty::Ref(_, ty, mtbl) = cx.tcx.type_of(item.owner_id).instantiate_identity().kind()
&& let expected_method_name = match mtbl {
Mutability::Mut => sym::iter_mut,
Mutability::Not => sym::iter,
}
&& !deref_chain(cx, ty).any(|ty| {
// We can't check inherent impls for slices, but we know that they have an `iter(_mut)` method
ty.peel_refs().is_slice() || get_adt_inherent_method(cx, ty, expected_method_name).is_some()
})
&& let Some(iter_assoc_span) = imp.items.iter().find_map(|item| {
if item.ident.name.as_str() == "IntoIter" {
Some(cx.tcx.hir_impl_item(item.id).expect_type().span)
} else {
None
}
})
&& is_ty_exported(cx, ty)
{
span_lint_and_then(
cx,
INTO_ITER_WITHOUT_ITER,
item.span,
format!("`IntoIterator` implemented for a reference type without an `{expected_method_name}` method"),
|diag| {
// The suggestion forwards to the `IntoIterator` impl and uses a form of UFCS
// to avoid name ambiguities, as there might be an inherent into_iter method
// that we don't want to call.
let sugg = format!(
"
impl {self_ty_without_ref} {{
fn {expected_method_name}({ref_self}self) -> {iter_ty} {{
<{ref_self}Self as IntoIterator>::into_iter(self)
}}
}}
",
self_ty_without_ref = snippet(cx, self_ty_without_ref.ty.span, ".."),
ref_self = mtbl.ref_prefix_str(),
iter_ty = snippet(cx, iter_assoc_span, ".."),
);
diag.span_suggestion_verbose(
item.span.shrink_to_lo(),
format!("consider implementing `{expected_method_name}`"),
sugg,
// Just like iter_without_into_iter, this suggestion is on a best effort basis
// and requires potentially adding lifetimes or moving them around.
Applicability::Unspecified,
);
},
);
}
}
fn check_impl_item(&mut self, cx: &LateContext<'_>, item: &rustc_hir::ImplItem<'_>) {
let item_did = item.owner_id.to_def_id();
let (borrow_prefix, expected_implicit_self) = match item.ident.name {
sym::iter => ("&", ImplicitSelfKind::RefImm),
sym::iter_mut => ("&mut ", ImplicitSelfKind::RefMut),
_ => return,
};
if !item.span.in_external_macro(cx.sess().source_map())
&& let ImplItemKind::Fn(sig, _) = item.kind
&& let FnRetTy::Return(ret) = sig.decl.output
&& is_nameable_in_impl_trait(ret)
&& cx.tcx.generics_of(item_did).is_own_empty()
&& sig.decl.implicit_self == expected_implicit_self
&& sig.decl.inputs.len() == 1
&& let Some(imp) = get_parent_as_impl(cx.tcx, item.hir_id())
&& imp.of_trait.is_none()
&& let sig = cx.tcx.liberate_late_bound_regions(
item_did,
cx.tcx.fn_sig(item_did).instantiate_identity()
)
&& let ref_ty = sig.inputs()[0]
&& let Some(into_iter_did) = cx.tcx.get_diagnostic_item(sym::IntoIterator)
&& let Some(iterator_did) = cx.tcx.get_diagnostic_item(sym::Iterator)
&& let ret_ty = sig.output()
// Order is important here, we need to check that the `fn iter` return type actually implements `IntoIterator`
// *before* normalizing `<_ as IntoIterator>::Item` (otherwise make_normalized_projection ICEs)
&& implements_trait(cx, ret_ty, iterator_did, &[])
&& let Some(iter_ty) = make_normalized_projection(
cx.tcx,
cx.typing_env(),
iterator_did,
sym::Item,
[ret_ty],
)
// Only lint if the `IntoIterator` impl doesn't actually exist
&& !implements_trait(cx, ref_ty, into_iter_did, &[])
&& is_ty_exported(cx, ref_ty.peel_refs())
{
let self_ty_snippet = format!("{borrow_prefix}{}", snippet(cx, imp.self_ty.span, ".."));
span_lint_and_then(
cx,
ITER_WITHOUT_INTO_ITER,
item.span,
format!(
"`{}` method without an `IntoIterator` impl for `{self_ty_snippet}`",
item.ident
),
|diag| {
// Get the lower span of the `impl` block, and insert the suggestion right before it:
// impl X {
// ^ fn iter(&self) -> impl IntoIterator { ... }
// }
let span_behind_impl = cx
.tcx
.def_span(cx.tcx.parent_hir_id(item.hir_id()).owner.def_id)
.shrink_to_lo();
let sugg = format!(
"
impl IntoIterator for {self_ty_snippet} {{
type Item = {iter_ty};
type IntoIter = {ret_ty};
fn into_iter(self) -> Self::IntoIter {{
self.iter()
}}
}}
"
);
diag.span_suggestion_verbose(
span_behind_impl,
format!("consider implementing `IntoIterator` for `{self_ty_snippet}`"),
sugg,
// Suggestion is on a best effort basis, might need some adjustments by the user
// such as adding some lifetimes in the associated types, or importing types.
Applicability::Unspecified,
);
},
);
}
}
}