-
Notifications
You must be signed in to change notification settings - Fork 13.2k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
fix: stop emitting .debug_pubnames
and .debug_pubtypes
#117962
Conversation
r? @cuviper (rustbot has picked a reviewer for you, use r? to override) |
This comment has been minimized.
This comment has been minimized.
This comment has been minimized.
This comment has been minimized.
3402571
to
30cd8d4
Compare
emitting .debug_pubnames
and .debug_pubtypes
@bors try @rust-timer queue |
This comment has been minimized.
This comment has been minimized.
[EXPERIMENT] fix: stop `emitting .debug_pubnames` and `.debug_pubtypes` ### DO NOT MERGE --- A continuation of rust-lang#94181. Fixes rust-lang#48762 MCP can be found in <rust-lang/compiler-team#688>. `.debug_pubnames` and `.debug_pubtypes` are poorly designed and people seldom use them. However, they take a considerable portion of size in the final binary. This tells LLVM stop emitting those sections on DWARFv4 or lower. DWARFv5 use `.debug_names` which is more concise in size and performant for name lookup.
@rust-timer queue |
This comment has been minimized.
This comment has been minimized.
☀️ Try build successful - checks-actions |
This comment has been minimized.
This comment has been minimized.
Finished benchmarking commit (5432eb3): comparison URL. Overall result: ✅ improvements - no action neededBenchmarking this pull request likely means that it is perf-sensitive, so we're automatically marking it as not fit for rolling up. While you can manually mark this PR as fit for rollup, we strongly recommend not doing so since this PR may lead to changes in compiler perf. @bors rollup=never Instruction countThis is a highly reliable metric that was used to determine the overall result at the top of this comment.
Max RSS (memory usage)ResultsThis is a less reliable metric that may be of interest but was not used to determine the overall result at the top of this comment.
CyclesResultsThis is a less reliable metric that may be of interest but was not used to determine the overall result at the top of this comment.
Binary sizeResultsThis is a less reliable metric that may be of interest but was not used to determine the overall result at the top of this comment.
Bootstrap: 676.352s -> 676.511s (0.02%) |
Great results! Is this only a win for DWARFv4 and lower? What determines the DWARF version being used? |
@nnethercote I've checked the binary size of v5 locally with I am looking forward to DWARFv5 being default :) |
5703c33
to
8cec336
Compare
emitting .debug_pubnames
and .debug_pubtypes
emitting .debug_pubnames
and .debug_pubtypes
r? wesleywiser This is ready for review, though I understand 10-day period of MCP rust-lang/compiler-team#688 hasn't yet passed. The first commit demonstrates that rustc did emit name tables for both dwarf v4 and v5. |
MCP is just accepted! |
☀️ Test successful - checks-actions |
Finished benchmarking commit (e2a3c9b): comparison URL. Overall result: ✅ improvements - no action needed@rustbot label: -perf-regression Instruction countThis is a highly reliable metric that was used to determine the overall result at the top of this comment.
Max RSS (memory usage)ResultsThis is a less reliable metric that may be of interest but was not used to determine the overall result at the top of this comment.
CyclesResultsThis is a less reliable metric that may be of interest but was not used to determine the overall result at the top of this comment.
Binary sizeResultsThis is a less reliable metric that may be of interest but was not used to determine the overall result at the top of this comment.
Bootstrap: 672.051s -> 672.519s (0.07%) |
This is the next upgrade to the Rust toolchain, from 1.75.0 to 1.76.0 (i.e. the latest) [1]. See the upgrade policy [2] and the comments on the first upgrade in commit 3ed03f4 ("rust: upgrade to Rust 1.68.2"). # Unstable features No unstable features that we use were stabilized in Rust 1.76.0. The only unstable features allowed to be used outside the `kernel` crate are still `new_uninit,offset_of`, though other code to be upstreamed may increase the list. Please see [3] for details. # Required changes `rustc` (and others) now warns when it cannot connect to the Make jobserver, thus mark those invocations as recursive as needed. Please see the previous commit for details. # Other changes Rust 1.76.0 does not emit the `.debug_pub{names,types}` sections anymore for DWARFv4 [4][5]. For instance, in the uncompressed debug info case, this debug information took: samples/rust/rust_minimal.o ~64 KiB (~18% of total object size) rust/kernel.o ~92 KiB (~15%) rust/core.o ~114 KiB ( ~5%) In the compressed debug info (zlib) case: samples/rust/rust_minimal.o ~11 KiB (~6%) rust/kernel.o ~17 KiB (~5%) rust/core.o ~21 KiB (~1.5%) In addition, the `rustc_codegen_gcc` backend now does not emit the `.eh_frame` section when compiling under `-Cpanic=abort` [6], thus removing the need for the patch in the CI to compile the kernel [7]. Moreover, it also now emits the `.comment` section too [6]. # `alloc` upgrade and reviewing The vast majority of changes are due to our `alloc` fork being upgraded at once. There are two kinds of changes to be aware of: the ones coming from upstream, which we should follow as closely as possible, and the updates needed in our added fallible APIs to keep them matching the newer infallible APIs coming from upstream. Instead of taking a look at the diff of this patch, an alternative approach is reviewing a diff of the changes between upstream `alloc` and the kernel's. This allows to easily inspect the kernel additions only, especially to check if the fallible methods we already have still match the infallible ones in the new version coming from upstream. Another approach is reviewing the changes introduced in the additions in the kernel fork between the two versions. This is useful to spot potentially unintended changes to our additions. To apply these approaches, one may follow steps similar to the following to generate a pair of patches that show the differences between upstream Rust and the kernel (for the subset of `alloc` we use) before and after applying this patch: # Get the difference with respect to the old version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > old.patch git -C linux restore rust/alloc # Apply this patch. git -C linux am rust-upgrade.patch # Get the difference with respect to the new version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > new.patch git -C linux restore rust/alloc Now one may check the `new.patch` to take a look at the additions (first approach) or at the difference between those two patches (second approach). For the latter, a side-by-side tool is recommended. Link: https://github.com/rust-lang/rust/blob/stable/RELEASES.md#version-1760-2024-02-08 [1] Link: https://rust-for-linux.com/rust-version-policy [2] Link: #2 [3] Link: rust-lang/compiler-team#688 [4] Link: rust-lang/rust#117962 [5] Link: rust-lang/rust#118068 [6] Link: https://github.com/Rust-for-Linux/ci-rustc_codegen_gcc [7] Signed-off-by: Miguel Ojeda <[email protected]> Link: https://lore.kernel.org/r/[email protected]
This is the next upgrade to the Rust toolchain, from 1.75.0 to 1.76.0 (i.e. the latest) [1]. See the upgrade policy [2] and the comments on the first upgrade in commit 3ed03f4 ("rust: upgrade to Rust 1.68.2"). # Unstable features No unstable features that we use were stabilized in Rust 1.76.0. The only unstable features allowed to be used outside the `kernel` crate are still `new_uninit,offset_of`, though other code to be upstreamed may increase the list. Please see [3] for details. # Required changes `rustc` (and others) now warns when it cannot connect to the Make jobserver, thus mark those invocations as recursive as needed. Please see the previous commit for details. # Other changes Rust 1.76.0 does not emit the `.debug_pub{names,types}` sections anymore for DWARFv4 [4][5]. For instance, in the uncompressed debug info case, this debug information took: samples/rust/rust_minimal.o ~64 KiB (~18% of total object size) rust/kernel.o ~92 KiB (~15%) rust/core.o ~114 KiB ( ~5%) In the compressed debug info (zlib) case: samples/rust/rust_minimal.o ~11 KiB (~6%) rust/kernel.o ~17 KiB (~5%) rust/core.o ~21 KiB (~1.5%) In addition, the `rustc_codegen_gcc` backend now does not emit the `.eh_frame` section when compiling under `-Cpanic=abort` [6], thus removing the need for the patch in the CI to compile the kernel [7]. Moreover, it also now emits the `.comment` section too [6]. # `alloc` upgrade and reviewing The vast majority of changes are due to our `alloc` fork being upgraded at once. There are two kinds of changes to be aware of: the ones coming from upstream, which we should follow as closely as possible, and the updates needed in our added fallible APIs to keep them matching the newer infallible APIs coming from upstream. Instead of taking a look at the diff of this patch, an alternative approach is reviewing a diff of the changes between upstream `alloc` and the kernel's. This allows to easily inspect the kernel additions only, especially to check if the fallible methods we already have still match the infallible ones in the new version coming from upstream. Another approach is reviewing the changes introduced in the additions in the kernel fork between the two versions. This is useful to spot potentially unintended changes to our additions. To apply these approaches, one may follow steps similar to the following to generate a pair of patches that show the differences between upstream Rust and the kernel (for the subset of `alloc` we use) before and after applying this patch: # Get the difference with respect to the old version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > old.patch git -C linux restore rust/alloc # Apply this patch. git -C linux am rust-upgrade.patch # Get the difference with respect to the new version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > new.patch git -C linux restore rust/alloc Now one may check the `new.patch` to take a look at the additions (first approach) or at the difference between those two patches (second approach). For the latter, a side-by-side tool is recommended. Link: https://github.com/rust-lang/rust/blob/stable/RELEASES.md#version-1760-2024-02-08 [1] Link: https://rust-for-linux.com/rust-version-policy [2] Link: #2 [3] Link: rust-lang/compiler-team#688 [4] Link: rust-lang/rust#117962 [5] Link: rust-lang/rust#118068 [6] Link: https://github.com/Rust-for-Linux/ci-rustc_codegen_gcc [7] Signed-off-by: Miguel Ojeda <[email protected]> Link: https://lore.kernel.org/r/[email protected]
This is the next upgrade to the Rust toolchain, from 1.75.0 to 1.76.0 (i.e. the latest) [1]. See the upgrade policy [2] and the comments on the first upgrade in commit 3ed03f4 ("rust: upgrade to Rust 1.68.2"). # Unstable features No unstable features that we use were stabilized in Rust 1.76.0. The only unstable features allowed to be used outside the `kernel` crate are still `new_uninit,offset_of`, though other code to be upstreamed may increase the list. Please see [3] for details. # Required changes `rustc` (and others) now warns when it cannot connect to the Make jobserver, thus mark those invocations as recursive as needed. Please see the previous commit for details. # Other changes Rust 1.76.0 does not emit the `.debug_pub{names,types}` sections anymore for DWARFv4 [4][5]. For instance, in the uncompressed debug info case, this debug information took: samples/rust/rust_minimal.o ~64 KiB (~18% of total object size) rust/kernel.o ~92 KiB (~15%) rust/core.o ~114 KiB ( ~5%) In the compressed debug info (zlib) case: samples/rust/rust_minimal.o ~11 KiB (~6%) rust/kernel.o ~17 KiB (~5%) rust/core.o ~21 KiB (~1.5%) In addition, the `rustc_codegen_gcc` backend now does not emit the `.eh_frame` section when compiling under `-Cpanic=abort` [6], thus removing the need for the patch in the CI to compile the kernel [7]. Moreover, it also now emits the `.comment` section too [6]. # `alloc` upgrade and reviewing The vast majority of changes are due to our `alloc` fork being upgraded at once. There are two kinds of changes to be aware of: the ones coming from upstream, which we should follow as closely as possible, and the updates needed in our added fallible APIs to keep them matching the newer infallible APIs coming from upstream. Instead of taking a look at the diff of this patch, an alternative approach is reviewing a diff of the changes between upstream `alloc` and the kernel's. This allows to easily inspect the kernel additions only, especially to check if the fallible methods we already have still match the infallible ones in the new version coming from upstream. Another approach is reviewing the changes introduced in the additions in the kernel fork between the two versions. This is useful to spot potentially unintended changes to our additions. To apply these approaches, one may follow steps similar to the following to generate a pair of patches that show the differences between upstream Rust and the kernel (for the subset of `alloc` we use) before and after applying this patch: # Get the difference with respect to the old version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > old.patch git -C linux restore rust/alloc # Apply this patch. git -C linux am rust-upgrade.patch # Get the difference with respect to the new version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > new.patch git -C linux restore rust/alloc Now one may check the `new.patch` to take a look at the additions (first approach) or at the difference between those two patches (second approach). For the latter, a side-by-side tool is recommended. Link: https://github.com/rust-lang/rust/blob/stable/RELEASES.md#version-1760-2024-02-08 [1] Link: https://rust-for-linux.com/rust-version-policy [2] Link: #2 [3] Link: rust-lang/compiler-team#688 [4] Link: rust-lang/rust#117962 [5] Link: rust-lang/rust#118068 [6] Link: https://github.com/Rust-for-Linux/ci-rustc_codegen_gcc [7] Tested-by: Boqun Feng <[email protected]> Reviewed-by: Alice Ryhl <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Miguel Ojeda <[email protected]>
This is the next upgrade to the Rust toolchain, from 1.75.0 to 1.76.0 (i.e. the latest) [1]. See the upgrade policy [2] and the comments on the first upgrade in commit 3ed03f4 ("rust: upgrade to Rust 1.68.2"). # Unstable features No unstable features that we use were stabilized in Rust 1.76.0. The only unstable features allowed to be used outside the `kernel` crate are still `new_uninit,offset_of`, though other code to be upstreamed may increase the list. Please see [3] for details. # Required changes `rustc` (and others) now warns when it cannot connect to the Make jobserver, thus mark those invocations as recursive as needed. Please see the previous commit for details. # Other changes Rust 1.76.0 does not emit the `.debug_pub{names,types}` sections anymore for DWARFv4 [4][5]. For instance, in the uncompressed debug info case, this debug information took: samples/rust/rust_minimal.o ~64 KiB (~18% of total object size) rust/kernel.o ~92 KiB (~15%) rust/core.o ~114 KiB ( ~5%) In the compressed debug info (zlib) case: samples/rust/rust_minimal.o ~11 KiB (~6%) rust/kernel.o ~17 KiB (~5%) rust/core.o ~21 KiB (~1.5%) In addition, the `rustc_codegen_gcc` backend now does not emit the `.eh_frame` section when compiling under `-Cpanic=abort` [6], thus removing the need for the patch in the CI to compile the kernel [7]. Moreover, it also now emits the `.comment` section too [6]. # `alloc` upgrade and reviewing The vast majority of changes are due to our `alloc` fork being upgraded at once. There are two kinds of changes to be aware of: the ones coming from upstream, which we should follow as closely as possible, and the updates needed in our added fallible APIs to keep them matching the newer infallible APIs coming from upstream. Instead of taking a look at the diff of this patch, an alternative approach is reviewing a diff of the changes between upstream `alloc` and the kernel's. This allows to easily inspect the kernel additions only, especially to check if the fallible methods we already have still match the infallible ones in the new version coming from upstream. Another approach is reviewing the changes introduced in the additions in the kernel fork between the two versions. This is useful to spot potentially unintended changes to our additions. To apply these approaches, one may follow steps similar to the following to generate a pair of patches that show the differences between upstream Rust and the kernel (for the subset of `alloc` we use) before and after applying this patch: # Get the difference with respect to the old version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > old.patch git -C linux restore rust/alloc # Apply this patch. git -C linux am rust-upgrade.patch # Get the difference with respect to the new version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > new.patch git -C linux restore rust/alloc Now one may check the `new.patch` to take a look at the additions (first approach) or at the difference between those two patches (second approach). For the latter, a side-by-side tool is recommended. Link: https://github.com/rust-lang/rust/blob/stable/RELEASES.md#version-1760-2024-02-08 [1] Link: https://rust-for-linux.com/rust-version-policy [2] Link: Rust-for-Linux/linux#2 [3] Link: rust-lang/compiler-team#688 [4] Link: rust-lang/rust#117962 [5] Link: rust-lang/rust#118068 [6] Link: https://github.com/Rust-for-Linux/ci-rustc_codegen_gcc [7] Tested-by: Boqun Feng <[email protected]> Reviewed-by: Alice Ryhl <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Miguel Ojeda <[email protected]>
This is the next upgrade to the Rust toolchain, from 1.75.0 to 1.76.0 (i.e. the latest) [1]. See the upgrade policy [2] and the comments on the first upgrade in commit 3ed03f4 ("rust: upgrade to Rust 1.68.2"). # Unstable features No unstable features that we use were stabilized in Rust 1.76.0. The only unstable features allowed to be used outside the `kernel` crate are still `new_uninit,offset_of`, though other code to be upstreamed may increase the list. Please see [3] for details. # Required changes `rustc` (and others) now warns when it cannot connect to the Make jobserver, thus mark those invocations as recursive as needed. Please see the previous commit for details. # Other changes Rust 1.76.0 does not emit the `.debug_pub{names,types}` sections anymore for DWARFv4 [4][5]. For instance, in the uncompressed debug info case, this debug information took: samples/rust/rust_minimal.o ~64 KiB (~18% of total object size) rust/kernel.o ~92 KiB (~15%) rust/core.o ~114 KiB ( ~5%) In the compressed debug info (zlib) case: samples/rust/rust_minimal.o ~11 KiB (~6%) rust/kernel.o ~17 KiB (~5%) rust/core.o ~21 KiB (~1.5%) In addition, the `rustc_codegen_gcc` backend now does not emit the `.eh_frame` section when compiling under `-Cpanic=abort` [6], thus removing the need for the patch in the CI to compile the kernel [7]. Moreover, it also now emits the `.comment` section too [6]. # `alloc` upgrade and reviewing The vast majority of changes are due to our `alloc` fork being upgraded at once. There are two kinds of changes to be aware of: the ones coming from upstream, which we should follow as closely as possible, and the updates needed in our added fallible APIs to keep them matching the newer infallible APIs coming from upstream. Instead of taking a look at the diff of this patch, an alternative approach is reviewing a diff of the changes between upstream `alloc` and the kernel's. This allows to easily inspect the kernel additions only, especially to check if the fallible methods we already have still match the infallible ones in the new version coming from upstream. Another approach is reviewing the changes introduced in the additions in the kernel fork between the two versions. This is useful to spot potentially unintended changes to our additions. To apply these approaches, one may follow steps similar to the following to generate a pair of patches that show the differences between upstream Rust and the kernel (for the subset of `alloc` we use) before and after applying this patch: # Get the difference with respect to the old version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > old.patch git -C linux restore rust/alloc # Apply this patch. git -C linux am rust-upgrade.patch # Get the difference with respect to the new version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > new.patch git -C linux restore rust/alloc Now one may check the `new.patch` to take a look at the additions (first approach) or at the difference between those two patches (second approach). For the latter, a side-by-side tool is recommended. Link: https://github.com/rust-lang/rust/blob/stable/RELEASES.md#version-1760-2024-02-08 [1] Link: https://rust-for-linux.com/rust-version-policy [2] Link: Rust-for-Linux/linux#2 [3] Link: rust-lang/compiler-team#688 [4] Link: rust-lang/rust#117962 [5] Link: rust-lang/rust#118068 [6] Link: https://github.com/Rust-for-Linux/ci-rustc_codegen_gcc [7] Tested-by: Boqun Feng <[email protected]> Reviewed-by: Alice Ryhl <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Miguel Ojeda <[email protected]>
This is the next upgrade to the Rust toolchain, from 1.75.0 to 1.76.0 (i.e. the latest) [1]. See the upgrade policy [2] and the comments on the first upgrade in commit 3ed03f4 ("rust: upgrade to Rust 1.68.2"). No unstable features that we use were stabilized in Rust 1.76.0. The only unstable features allowed to be used outside the `kernel` crate are still `new_uninit,offset_of`, though other code to be upstreamed may increase the list. Please see [3] for details. `rustc` (and others) now warns when it cannot connect to the Make jobserver, thus mark those invocations as recursive as needed. Please see the previous commit for details. Rust 1.76.0 does not emit the `.debug_pub{names,types}` sections anymore for DWARFv4 [4][5]. For instance, in the uncompressed debug info case, this debug information took: samples/rust/rust_minimal.o ~64 KiB (~18% of total object size) rust/kernel.o ~92 KiB (~15%) rust/core.o ~114 KiB ( ~5%) In the compressed debug info (zlib) case: samples/rust/rust_minimal.o ~11 KiB (~6%) rust/kernel.o ~17 KiB (~5%) rust/core.o ~21 KiB (~1.5%) In addition, the `rustc_codegen_gcc` backend now does not emit the `.eh_frame` section when compiling under `-Cpanic=abort` [6], thus removing the need for the patch in the CI to compile the kernel [7]. Moreover, it also now emits the `.comment` section too [6]. The vast majority of changes are due to our `alloc` fork being upgraded at once. There are two kinds of changes to be aware of: the ones coming from upstream, which we should follow as closely as possible, and the updates needed in our added fallible APIs to keep them matching the newer infallible APIs coming from upstream. Instead of taking a look at the diff of this patch, an alternative approach is reviewing a diff of the changes between upstream `alloc` and the kernel's. This allows to easily inspect the kernel additions only, especially to check if the fallible methods we already have still match the infallible ones in the new version coming from upstream. Another approach is reviewing the changes introduced in the additions in the kernel fork between the two versions. This is useful to spot potentially unintended changes to our additions. To apply these approaches, one may follow steps similar to the following to generate a pair of patches that show the differences between upstream Rust and the kernel (for the subset of `alloc` we use) before and after applying this patch: # Get the difference with respect to the old version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > old.patch git -C linux restore rust/alloc # Apply this patch. git -C linux am rust-upgrade.patch # Get the difference with respect to the new version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > new.patch git -C linux restore rust/alloc Now one may check the `new.patch` to take a look at the additions (first approach) or at the difference between those two patches (second approach). For the latter, a side-by-side tool is recommended. Link: https://github.com/rust-lang/rust/blob/stable/RELEASES.md#version-1760-2024-02-08 [1] Link: https://rust-for-linux.com/rust-version-policy [2] Link: Rust-for-Linux#2 [3] Link: rust-lang/compiler-team#688 [4] Link: rust-lang/rust#117962 [5] Link: rust-lang/rust#118068 [6] Link: https://github.com/Rust-for-Linux/ci-rustc_codegen_gcc [7] Tested-by: Boqun Feng <[email protected]> Reviewed-by: Alice Ryhl <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Miguel Ojeda <[email protected]>
This is the next upgrade to the Rust toolchain, from 1.75.0 to 1.76.0 (i.e. the latest) [1]. See the upgrade policy [2] and the comments on the first upgrade in commit 3ed03f4 ("rust: upgrade to Rust 1.68.2"). # Unstable features No unstable features that we use were stabilized in Rust 1.76.0. The only unstable features allowed to be used outside the `kernel` crate are still `new_uninit,offset_of`, though other code to be upstreamed may increase the list. Please see [3] for details. # Required changes `rustc` (and others) now warns when it cannot connect to the Make jobserver, thus mark those invocations as recursive as needed. Please see the previous commit for details. # Other changes Rust 1.76.0 does not emit the `.debug_pub{names,types}` sections anymore for DWARFv4 [4][5]. For instance, in the uncompressed debug info case, this debug information took: samples/rust/rust_minimal.o ~64 KiB (~18% of total object size) rust/kernel.o ~92 KiB (~15%) rust/core.o ~114 KiB ( ~5%) In the compressed debug info (zlib) case: samples/rust/rust_minimal.o ~11 KiB (~6%) rust/kernel.o ~17 KiB (~5%) rust/core.o ~21 KiB (~1.5%) In addition, the `rustc_codegen_gcc` backend now does not emit the `.eh_frame` section when compiling under `-Cpanic=abort` [6], thus removing the need for the patch in the CI to compile the kernel [7]. Moreover, it also now emits the `.comment` section too [6]. # `alloc` upgrade and reviewing The vast majority of changes are due to our `alloc` fork being upgraded at once. There are two kinds of changes to be aware of: the ones coming from upstream, which we should follow as closely as possible, and the updates needed in our added fallible APIs to keep them matching the newer infallible APIs coming from upstream. Instead of taking a look at the diff of this patch, an alternative approach is reviewing a diff of the changes between upstream `alloc` and the kernel's. This allows to easily inspect the kernel additions only, especially to check if the fallible methods we already have still match the infallible ones in the new version coming from upstream. Another approach is reviewing the changes introduced in the additions in the kernel fork between the two versions. This is useful to spot potentially unintended changes to our additions. To apply these approaches, one may follow steps similar to the following to generate a pair of patches that show the differences between upstream Rust and the kernel (for the subset of `alloc` we use) before and after applying this patch: # Get the difference with respect to the old version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > old.patch git -C linux restore rust/alloc # Apply this patch. git -C linux am rust-upgrade.patch # Get the difference with respect to the new version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > new.patch git -C linux restore rust/alloc Now one may check the `new.patch` to take a look at the additions (first approach) or at the difference between those two patches (second approach). For the latter, a side-by-side tool is recommended. Link: https://github.com/rust-lang/rust/blob/stable/RELEASES.md#version-1760-2024-02-08 [1] Link: https://rust-for-linux.com/rust-version-policy [2] Link: Rust-for-Linux/linux#2 [3] Link: rust-lang/compiler-team#688 [4] Link: rust-lang/rust#117962 [5] Link: rust-lang/rust#118068 [6] Link: https://github.com/Rust-for-Linux/ci-rustc_codegen_gcc [7] Tested-by: Boqun Feng <[email protected]> Reviewed-by: Alice Ryhl <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Miguel Ojeda <[email protected]>
This is the next upgrade to the Rust toolchain, from 1.75.0 to 1.76.0 (i.e. the latest) [1]. See the upgrade policy [2] and the comments on the first upgrade in commit 3ed03f4 ("rust: upgrade to Rust 1.68.2"). # Unstable features No unstable features that we use were stabilized in Rust 1.76.0. The only unstable features allowed to be used outside the `kernel` crate are still `new_uninit,offset_of`, though other code to be upstreamed may increase the list. Please see [3] for details. # Required changes `rustc` (and others) now warns when it cannot connect to the Make jobserver, thus mark those invocations as recursive as needed. Please see the previous commit for details. # Other changes Rust 1.76.0 does not emit the `.debug_pub{names,types}` sections anymore for DWARFv4 [4][5]. For instance, in the uncompressed debug info case, this debug information took: samples/rust/rust_minimal.o ~64 KiB (~18% of total object size) rust/kernel.o ~92 KiB (~15%) rust/core.o ~114 KiB ( ~5%) In the compressed debug info (zlib) case: samples/rust/rust_minimal.o ~11 KiB (~6%) rust/kernel.o ~17 KiB (~5%) rust/core.o ~21 KiB (~1.5%) In addition, the `rustc_codegen_gcc` backend now does not emit the `.eh_frame` section when compiling under `-Cpanic=abort` [6], thus removing the need for the patch in the CI to compile the kernel [7]. Moreover, it also now emits the `.comment` section too [6]. # `alloc` upgrade and reviewing The vast majority of changes are due to our `alloc` fork being upgraded at once. There are two kinds of changes to be aware of: the ones coming from upstream, which we should follow as closely as possible, and the updates needed in our added fallible APIs to keep them matching the newer infallible APIs coming from upstream. Instead of taking a look at the diff of this patch, an alternative approach is reviewing a diff of the changes between upstream `alloc` and the kernel's. This allows to easily inspect the kernel additions only, especially to check if the fallible methods we already have still match the infallible ones in the new version coming from upstream. Another approach is reviewing the changes introduced in the additions in the kernel fork between the two versions. This is useful to spot potentially unintended changes to our additions. To apply these approaches, one may follow steps similar to the following to generate a pair of patches that show the differences between upstream Rust and the kernel (for the subset of `alloc` we use) before and after applying this patch: # Get the difference with respect to the old version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > old.patch git -C linux restore rust/alloc # Apply this patch. git -C linux am rust-upgrade.patch # Get the difference with respect to the new version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > new.patch git -C linux restore rust/alloc Now one may check the `new.patch` to take a look at the additions (first approach) or at the difference between those two patches (second approach). For the latter, a side-by-side tool is recommended. Link: https://github.com/rust-lang/rust/blob/stable/RELEASES.md#version-1760-2024-02-08 [1] Link: https://rust-for-linux.com/rust-version-policy [2] Link: Rust-for-Linux#2 [3] Link: rust-lang/compiler-team#688 [4] Link: rust-lang/rust#117962 [5] Link: rust-lang/rust#118068 [6] Link: https://github.com/Rust-for-Linux/ci-rustc_codegen_gcc [7] Tested-by: Boqun Feng <[email protected]> Reviewed-by: Alice Ryhl <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Miguel Ojeda <[email protected]>
This is the next upgrade to the Rust toolchain, from 1.75.0 to 1.76.0 (i.e. the latest) [1]. See the upgrade policy [2] and the comments on the first upgrade in commit 3ed03f4 ("rust: upgrade to Rust 1.68.2"). No unstable features that we use were stabilized in Rust 1.76.0. The only unstable features allowed to be used outside the `kernel` crate are still `new_uninit,offset_of`, though other code to be upstreamed may increase the list. Please see [3] for details. `rustc` (and others) now warns when it cannot connect to the Make jobserver, thus mark those invocations as recursive as needed. Please see the previous commit for details. Rust 1.76.0 does not emit the `.debug_pub{names,types}` sections anymore for DWARFv4 [4][5]. For instance, in the uncompressed debug info case, this debug information took: samples/rust/rust_minimal.o ~64 KiB (~18% of total object size) rust/kernel.o ~92 KiB (~15%) rust/core.o ~114 KiB ( ~5%) In the compressed debug info (zlib) case: samples/rust/rust_minimal.o ~11 KiB (~6%) rust/kernel.o ~17 KiB (~5%) rust/core.o ~21 KiB (~1.5%) In addition, the `rustc_codegen_gcc` backend now does not emit the `.eh_frame` section when compiling under `-Cpanic=abort` [6], thus removing the need for the patch in the CI to compile the kernel [7]. Moreover, it also now emits the `.comment` section too [6]. The vast majority of changes are due to our `alloc` fork being upgraded at once. There are two kinds of changes to be aware of: the ones coming from upstream, which we should follow as closely as possible, and the updates needed in our added fallible APIs to keep them matching the newer infallible APIs coming from upstream. Instead of taking a look at the diff of this patch, an alternative approach is reviewing a diff of the changes between upstream `alloc` and the kernel's. This allows to easily inspect the kernel additions only, especially to check if the fallible methods we already have still match the infallible ones in the new version coming from upstream. Another approach is reviewing the changes introduced in the additions in the kernel fork between the two versions. This is useful to spot potentially unintended changes to our additions. To apply these approaches, one may follow steps similar to the following to generate a pair of patches that show the differences between upstream Rust and the kernel (for the subset of `alloc` we use) before and after applying this patch: # Get the difference with respect to the old version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > old.patch git -C linux restore rust/alloc # Apply this patch. git -C linux am rust-upgrade.patch # Get the difference with respect to the new version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > new.patch git -C linux restore rust/alloc Now one may check the `new.patch` to take a look at the additions (first approach) or at the difference between those two patches (second approach). For the latter, a side-by-side tool is recommended. Link: https://github.com/rust-lang/rust/blob/stable/RELEASES.md#version-1760-2024-02-08 [1] Link: https://rust-for-linux.com/rust-version-policy [2] Link: Rust-for-Linux#2 [3] Link: rust-lang/compiler-team#688 [4] Link: rust-lang/rust#117962 [5] Link: rust-lang/rust#118068 [6] Link: https://github.com/Rust-for-Linux/ci-rustc_codegen_gcc [7] Tested-by: Boqun Feng <[email protected]> Reviewed-by: Alice Ryhl <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Miguel Ojeda <[email protected]>
This is the next upgrade to the Rust toolchain, from 1.75.0 to 1.76.0 (i.e. the latest) [1]. See the upgrade policy [2] and the comments on the first upgrade in commit 3ed03f4 ("rust: upgrade to Rust 1.68.2"). No unstable features that we use were stabilized in Rust 1.76.0. The only unstable features allowed to be used outside the `kernel` crate are still `new_uninit,offset_of`, though other code to be upstreamed may increase the list. Please see [3] for details. `rustc` (and others) now warns when it cannot connect to the Make jobserver, thus mark those invocations as recursive as needed. Please see the previous commit for details. Rust 1.76.0 does not emit the `.debug_pub{names,types}` sections anymore for DWARFv4 [4][5]. For instance, in the uncompressed debug info case, this debug information took: samples/rust/rust_minimal.o ~64 KiB (~18% of total object size) rust/kernel.o ~92 KiB (~15%) rust/core.o ~114 KiB ( ~5%) In the compressed debug info (zlib) case: samples/rust/rust_minimal.o ~11 KiB (~6%) rust/kernel.o ~17 KiB (~5%) rust/core.o ~21 KiB (~1.5%) In addition, the `rustc_codegen_gcc` backend now does not emit the `.eh_frame` section when compiling under `-Cpanic=abort` [6], thus removing the need for the patch in the CI to compile the kernel [7]. Moreover, it also now emits the `.comment` section too [6]. The vast majority of changes are due to our `alloc` fork being upgraded at once. There are two kinds of changes to be aware of: the ones coming from upstream, which we should follow as closely as possible, and the updates needed in our added fallible APIs to keep them matching the newer infallible APIs coming from upstream. Instead of taking a look at the diff of this patch, an alternative approach is reviewing a diff of the changes between upstream `alloc` and the kernel's. This allows to easily inspect the kernel additions only, especially to check if the fallible methods we already have still match the infallible ones in the new version coming from upstream. Another approach is reviewing the changes introduced in the additions in the kernel fork between the two versions. This is useful to spot potentially unintended changes to our additions. To apply these approaches, one may follow steps similar to the following to generate a pair of patches that show the differences between upstream Rust and the kernel (for the subset of `alloc` we use) before and after applying this patch: # Get the difference with respect to the old version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > old.patch git -C linux restore rust/alloc # Apply this patch. git -C linux am rust-upgrade.patch # Get the difference with respect to the new version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > new.patch git -C linux restore rust/alloc Now one may check the `new.patch` to take a look at the additions (first approach) or at the difference between those two patches (second approach). For the latter, a side-by-side tool is recommended. Link: https://github.com/rust-lang/rust/blob/stable/RELEASES.md#version-1760-2024-02-08 [1] Link: https://rust-for-linux.com/rust-version-policy [2] Link: Rust-for-Linux/linux#2 [3] Link: rust-lang/compiler-team#688 [4] Link: rust-lang/rust#117962 [5] Link: rust-lang/rust#118068 [6] Link: https://github.com/Rust-for-Linux/ci-rustc_codegen_gcc [7] Tested-by: Boqun Feng <[email protected]> Reviewed-by: Alice Ryhl <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Miguel Ojeda <[email protected]>
This is the next upgrade to the Rust toolchain, from 1.75.0 to 1.76.0 (i.e. the latest) [1]. See the upgrade policy [2] and the comments on the first upgrade in commit 3ed03f4 ("rust: upgrade to Rust 1.68.2"). No unstable features that we use were stabilized in Rust 1.76.0. The only unstable features allowed to be used outside the `kernel` crate are still `new_uninit,offset_of`, though other code to be upstreamed may increase the list. Please see [3] for details. `rustc` (and others) now warns when it cannot connect to the Make jobserver, thus mark those invocations as recursive as needed. Please see the previous commit for details. Rust 1.76.0 does not emit the `.debug_pub{names,types}` sections anymore for DWARFv4 [4][5]. For instance, in the uncompressed debug info case, this debug information took: samples/rust/rust_minimal.o ~64 KiB (~18% of total object size) rust/kernel.o ~92 KiB (~15%) rust/core.o ~114 KiB ( ~5%) In the compressed debug info (zlib) case: samples/rust/rust_minimal.o ~11 KiB (~6%) rust/kernel.o ~17 KiB (~5%) rust/core.o ~21 KiB (~1.5%) In addition, the `rustc_codegen_gcc` backend now does not emit the `.eh_frame` section when compiling under `-Cpanic=abort` [6], thus removing the need for the patch in the CI to compile the kernel [7]. Moreover, it also now emits the `.comment` section too [6]. The vast majority of changes are due to our `alloc` fork being upgraded at once. There are two kinds of changes to be aware of: the ones coming from upstream, which we should follow as closely as possible, and the updates needed in our added fallible APIs to keep them matching the newer infallible APIs coming from upstream. Instead of taking a look at the diff of this patch, an alternative approach is reviewing a diff of the changes between upstream `alloc` and the kernel's. This allows to easily inspect the kernel additions only, especially to check if the fallible methods we already have still match the infallible ones in the new version coming from upstream. Another approach is reviewing the changes introduced in the additions in the kernel fork between the two versions. This is useful to spot potentially unintended changes to our additions. To apply these approaches, one may follow steps similar to the following to generate a pair of patches that show the differences between upstream Rust and the kernel (for the subset of `alloc` we use) before and after applying this patch: # Get the difference with respect to the old version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > old.patch git -C linux restore rust/alloc # Apply this patch. git -C linux am rust-upgrade.patch # Get the difference with respect to the new version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > new.patch git -C linux restore rust/alloc Now one may check the `new.patch` to take a look at the additions (first approach) or at the difference between those two patches (second approach). For the latter, a side-by-side tool is recommended. Link: https://github.com/rust-lang/rust/blob/stable/RELEASES.md#version-1760-2024-02-08 [1] Link: https://rust-for-linux.com/rust-version-policy [2] Link: Rust-for-Linux/linux#2 [3] Link: rust-lang/compiler-team#688 [4] Link: rust-lang/rust#117962 [5] Link: rust-lang/rust#118068 [6] Link: https://github.com/Rust-for-Linux/ci-rustc_codegen_gcc [7] Tested-by: Boqun Feng <[email protected]> Reviewed-by: Alice Ryhl <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Miguel Ojeda <[email protected]>
This is the next upgrade to the Rust toolchain, from 1.75.0 to 1.76.0 (i.e. the latest) [1]. See the upgrade policy [2] and the comments on the first upgrade in commit 3ed03f4 ("rust: upgrade to Rust 1.68.2"). No unstable features that we use were stabilized in Rust 1.76.0. The only unstable features allowed to be used outside the `kernel` crate are still `new_uninit,offset_of`, though other code to be upstreamed may increase the list. Please see [3] for details. `rustc` (and others) now warns when it cannot connect to the Make jobserver, thus mark those invocations as recursive as needed. Please see the previous commit for details. Rust 1.76.0 does not emit the `.debug_pub{names,types}` sections anymore for DWARFv4 [4][5]. For instance, in the uncompressed debug info case, this debug information took: samples/rust/rust_minimal.o ~64 KiB (~18% of total object size) rust/kernel.o ~92 KiB (~15%) rust/core.o ~114 KiB ( ~5%) In the compressed debug info (zlib) case: samples/rust/rust_minimal.o ~11 KiB (~6%) rust/kernel.o ~17 KiB (~5%) rust/core.o ~21 KiB (~1.5%) In addition, the `rustc_codegen_gcc` backend now does not emit the `.eh_frame` section when compiling under `-Cpanic=abort` [6], thus removing the need for the patch in the CI to compile the kernel [7]. Moreover, it also now emits the `.comment` section too [6]. The vast majority of changes are due to our `alloc` fork being upgraded at once. There are two kinds of changes to be aware of: the ones coming from upstream, which we should follow as closely as possible, and the updates needed in our added fallible APIs to keep them matching the newer infallible APIs coming from upstream. Instead of taking a look at the diff of this patch, an alternative approach is reviewing a diff of the changes between upstream `alloc` and the kernel's. This allows to easily inspect the kernel additions only, especially to check if the fallible methods we already have still match the infallible ones in the new version coming from upstream. Another approach is reviewing the changes introduced in the additions in the kernel fork between the two versions. This is useful to spot potentially unintended changes to our additions. To apply these approaches, one may follow steps similar to the following to generate a pair of patches that show the differences between upstream Rust and the kernel (for the subset of `alloc` we use) before and after applying this patch: # Get the difference with respect to the old version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > old.patch git -C linux restore rust/alloc # Apply this patch. git -C linux am rust-upgrade.patch # Get the difference with respect to the new version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > new.patch git -C linux restore rust/alloc Now one may check the `new.patch` to take a look at the additions (first approach) or at the difference between those two patches (second approach). For the latter, a side-by-side tool is recommended. Link: https://github.com/rust-lang/rust/blob/stable/RELEASES.md#version-1760-2024-02-08 [1] Link: https://rust-for-linux.com/rust-version-policy [2] Link: Rust-for-Linux/linux#2 [3] Link: rust-lang/compiler-team#688 [4] Link: rust-lang/rust#117962 [5] Link: rust-lang/rust#118068 [6] Link: https://github.com/Rust-for-Linux/ci-rustc_codegen_gcc [7] Tested-by: Boqun Feng <[email protected]> Reviewed-by: Alice Ryhl <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Miguel Ojeda <[email protected]>
This is the next upgrade to the Rust toolchain, from 1.75.0 to 1.76.0 (i.e. the latest) [1]. See the upgrade policy [2] and the comments on the first upgrade in commit 3ed03f4 ("rust: upgrade to Rust 1.68.2"). No unstable features that we use were stabilized in Rust 1.76.0. The only unstable features allowed to be used outside the `kernel` crate are still `new_uninit,offset_of`, though other code to be upstreamed may increase the list. Please see [3] for details. `rustc` (and others) now warns when it cannot connect to the Make jobserver, thus mark those invocations as recursive as needed. Please see the previous commit for details. Rust 1.76.0 does not emit the `.debug_pub{names,types}` sections anymore for DWARFv4 [4][5]. For instance, in the uncompressed debug info case, this debug information took: samples/rust/rust_minimal.o ~64 KiB (~18% of total object size) rust/kernel.o ~92 KiB (~15%) rust/core.o ~114 KiB ( ~5%) In the compressed debug info (zlib) case: samples/rust/rust_minimal.o ~11 KiB (~6%) rust/kernel.o ~17 KiB (~5%) rust/core.o ~21 KiB (~1.5%) In addition, the `rustc_codegen_gcc` backend now does not emit the `.eh_frame` section when compiling under `-Cpanic=abort` [6], thus removing the need for the patch in the CI to compile the kernel [7]. Moreover, it also now emits the `.comment` section too [6]. The vast majority of changes are due to our `alloc` fork being upgraded at once. There are two kinds of changes to be aware of: the ones coming from upstream, which we should follow as closely as possible, and the updates needed in our added fallible APIs to keep them matching the newer infallible APIs coming from upstream. Instead of taking a look at the diff of this patch, an alternative approach is reviewing a diff of the changes between upstream `alloc` and the kernel's. This allows to easily inspect the kernel additions only, especially to check if the fallible methods we already have still match the infallible ones in the new version coming from upstream. Another approach is reviewing the changes introduced in the additions in the kernel fork between the two versions. This is useful to spot potentially unintended changes to our additions. To apply these approaches, one may follow steps similar to the following to generate a pair of patches that show the differences between upstream Rust and the kernel (for the subset of `alloc` we use) before and after applying this patch: # Get the difference with respect to the old version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > old.patch git -C linux restore rust/alloc # Apply this patch. git -C linux am rust-upgrade.patch # Get the difference with respect to the new version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > new.patch git -C linux restore rust/alloc Now one may check the `new.patch` to take a look at the additions (first approach) or at the difference between those two patches (second approach). For the latter, a side-by-side tool is recommended. Link: https://github.com/rust-lang/rust/blob/stable/RELEASES.md#version-1760-2024-02-08 [1] Link: https://rust-for-linux.com/rust-version-policy [2] Link: Rust-for-Linux#2 [3] Link: rust-lang/compiler-team#688 [4] Link: rust-lang/rust#117962 [5] Link: rust-lang/rust#118068 [6] Link: https://github.com/Rust-for-Linux/ci-rustc_codegen_gcc [7] Tested-by: Boqun Feng <[email protected]> Reviewed-by: Alice Ryhl <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Miguel Ojeda <[email protected]>
This is the next upgrade to the Rust toolchain, from 1.75.0 to 1.76.0 (i.e. the latest) [1]. See the upgrade policy [2] and the comments on the first upgrade in commit 3ed03f4 ("rust: upgrade to Rust 1.68.2"). No unstable features that we use were stabilized in Rust 1.76.0. The only unstable features allowed to be used outside the `kernel` crate are still `new_uninit,offset_of`, though other code to be upstreamed may increase the list. Please see [3] for details. `rustc` (and others) now warns when it cannot connect to the Make jobserver, thus mark those invocations as recursive as needed. Please see the previous commit for details. Rust 1.76.0 does not emit the `.debug_pub{names,types}` sections anymore for DWARFv4 [4][5]. For instance, in the uncompressed debug info case, this debug information took: samples/rust/rust_minimal.o ~64 KiB (~18% of total object size) rust/kernel.o ~92 KiB (~15%) rust/core.o ~114 KiB ( ~5%) In the compressed debug info (zlib) case: samples/rust/rust_minimal.o ~11 KiB (~6%) rust/kernel.o ~17 KiB (~5%) rust/core.o ~21 KiB (~1.5%) In addition, the `rustc_codegen_gcc` backend now does not emit the `.eh_frame` section when compiling under `-Cpanic=abort` [6], thus removing the need for the patch in the CI to compile the kernel [7]. Moreover, it also now emits the `.comment` section too [6]. The vast majority of changes are due to our `alloc` fork being upgraded at once. There are two kinds of changes to be aware of: the ones coming from upstream, which we should follow as closely as possible, and the updates needed in our added fallible APIs to keep them matching the newer infallible APIs coming from upstream. Instead of taking a look at the diff of this patch, an alternative approach is reviewing a diff of the changes between upstream `alloc` and the kernel's. This allows to easily inspect the kernel additions only, especially to check if the fallible methods we already have still match the infallible ones in the new version coming from upstream. Another approach is reviewing the changes introduced in the additions in the kernel fork between the two versions. This is useful to spot potentially unintended changes to our additions. To apply these approaches, one may follow steps similar to the following to generate a pair of patches that show the differences between upstream Rust and the kernel (for the subset of `alloc` we use) before and after applying this patch: # Get the difference with respect to the old version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > old.patch git -C linux restore rust/alloc # Apply this patch. git -C linux am rust-upgrade.patch # Get the difference with respect to the new version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > new.patch git -C linux restore rust/alloc Now one may check the `new.patch` to take a look at the additions (first approach) or at the difference between those two patches (second approach). For the latter, a side-by-side tool is recommended. Link: https://github.com/rust-lang/rust/blob/stable/RELEASES.md#version-1760-2024-02-08 [1] Link: https://rust-for-linux.com/rust-version-policy [2] Link: Rust-for-Linux#2 [3] Link: rust-lang/compiler-team#688 [4] Link: rust-lang/rust#117962 [5] Link: rust-lang/rust#118068 [6] Link: https://github.com/Rust-for-Linux/ci-rustc_codegen_gcc [7] Tested-by: Boqun Feng <[email protected]> Reviewed-by: Alice Ryhl <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Miguel Ojeda <[email protected]>
This is the next upgrade to the Rust toolchain, from 1.75.0 to 1.76.0 (i.e. the latest) [1]. See the upgrade policy [2] and the comments on the first upgrade in commit 3ed03f4 ("rust: upgrade to Rust 1.68.2"). No unstable features that we use were stabilized in Rust 1.76.0. The only unstable features allowed to be used outside the `kernel` crate are still `new_uninit,offset_of`, though other code to be upstreamed may increase the list. Please see [3] for details. `rustc` (and others) now warns when it cannot connect to the Make jobserver, thus mark those invocations as recursive as needed. Please see the previous commit for details. Rust 1.76.0 does not emit the `.debug_pub{names,types}` sections anymore for DWARFv4 [4][5]. For instance, in the uncompressed debug info case, this debug information took: samples/rust/rust_minimal.o ~64 KiB (~18% of total object size) rust/kernel.o ~92 KiB (~15%) rust/core.o ~114 KiB ( ~5%) In the compressed debug info (zlib) case: samples/rust/rust_minimal.o ~11 KiB (~6%) rust/kernel.o ~17 KiB (~5%) rust/core.o ~21 KiB (~1.5%) In addition, the `rustc_codegen_gcc` backend now does not emit the `.eh_frame` section when compiling under `-Cpanic=abort` [6], thus removing the need for the patch in the CI to compile the kernel [7]. Moreover, it also now emits the `.comment` section too [6]. The vast majority of changes are due to our `alloc` fork being upgraded at once. There are two kinds of changes to be aware of: the ones coming from upstream, which we should follow as closely as possible, and the updates needed in our added fallible APIs to keep them matching the newer infallible APIs coming from upstream. Instead of taking a look at the diff of this patch, an alternative approach is reviewing a diff of the changes between upstream `alloc` and the kernel's. This allows to easily inspect the kernel additions only, especially to check if the fallible methods we already have still match the infallible ones in the new version coming from upstream. Another approach is reviewing the changes introduced in the additions in the kernel fork between the two versions. This is useful to spot potentially unintended changes to our additions. To apply these approaches, one may follow steps similar to the following to generate a pair of patches that show the differences between upstream Rust and the kernel (for the subset of `alloc` we use) before and after applying this patch: # Get the difference with respect to the old version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > old.patch git -C linux restore rust/alloc # Apply this patch. git -C linux am rust-upgrade.patch # Get the difference with respect to the new version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > new.patch git -C linux restore rust/alloc Now one may check the `new.patch` to take a look at the additions (first approach) or at the difference between those two patches (second approach). For the latter, a side-by-side tool is recommended. Link: https://github.com/rust-lang/rust/blob/stable/RELEASES.md#version-1760-2024-02-08 [1] Link: https://rust-for-linux.com/rust-version-policy [2] Link: Rust-for-Linux/linux#2 [3] Link: rust-lang/compiler-team#688 [4] Link: rust-lang/rust#117962 [5] Link: rust-lang/rust#118068 [6] Link: https://github.com/Rust-for-Linux/ci-rustc_codegen_gcc [7] Tested-by: Boqun Feng <[email protected]> Reviewed-by: Alice Ryhl <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Miguel Ojeda <[email protected]>
This is the next upgrade to the Rust toolchain, from 1.75.0 to 1.76.0 (i.e. the latest) [1]. See the upgrade policy [2] and the comments on the first upgrade in commit 3ed03f4 ("rust: upgrade to Rust 1.68.2"). No unstable features that we use were stabilized in Rust 1.76.0. The only unstable features allowed to be used outside the `kernel` crate are still `new_uninit,offset_of`, though other code to be upstreamed may increase the list. Please see [3] for details. `rustc` (and others) now warns when it cannot connect to the Make jobserver, thus mark those invocations as recursive as needed. Please see the previous commit for details. Rust 1.76.0 does not emit the `.debug_pub{names,types}` sections anymore for DWARFv4 [4][5]. For instance, in the uncompressed debug info case, this debug information took: samples/rust/rust_minimal.o ~64 KiB (~18% of total object size) rust/kernel.o ~92 KiB (~15%) rust/core.o ~114 KiB ( ~5%) In the compressed debug info (zlib) case: samples/rust/rust_minimal.o ~11 KiB (~6%) rust/kernel.o ~17 KiB (~5%) rust/core.o ~21 KiB (~1.5%) In addition, the `rustc_codegen_gcc` backend now does not emit the `.eh_frame` section when compiling under `-Cpanic=abort` [6], thus removing the need for the patch in the CI to compile the kernel [7]. Moreover, it also now emits the `.comment` section too [6]. The vast majority of changes are due to our `alloc` fork being upgraded at once. There are two kinds of changes to be aware of: the ones coming from upstream, which we should follow as closely as possible, and the updates needed in our added fallible APIs to keep them matching the newer infallible APIs coming from upstream. Instead of taking a look at the diff of this patch, an alternative approach is reviewing a diff of the changes between upstream `alloc` and the kernel's. This allows to easily inspect the kernel additions only, especially to check if the fallible methods we already have still match the infallible ones in the new version coming from upstream. Another approach is reviewing the changes introduced in the additions in the kernel fork between the two versions. This is useful to spot potentially unintended changes to our additions. To apply these approaches, one may follow steps similar to the following to generate a pair of patches that show the differences between upstream Rust and the kernel (for the subset of `alloc` we use) before and after applying this patch: # Get the difference with respect to the old version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > old.patch git -C linux restore rust/alloc # Apply this patch. git -C linux am rust-upgrade.patch # Get the difference with respect to the new version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > new.patch git -C linux restore rust/alloc Now one may check the `new.patch` to take a look at the additions (first approach) or at the difference between those two patches (second approach). For the latter, a side-by-side tool is recommended. Link: https://github.com/rust-lang/rust/blob/stable/RELEASES.md#version-1760-2024-02-08 [1] Link: https://rust-for-linux.com/rust-version-policy [2] Link: Rust-for-Linux/linux#2 [3] Link: rust-lang/compiler-team#688 [4] Link: rust-lang/rust#117962 [5] Link: rust-lang/rust#118068 [6] Link: https://github.com/Rust-for-Linux/ci-rustc_codegen_gcc [7] Tested-by: Boqun Feng <[email protected]> Reviewed-by: Alice Ryhl <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Miguel Ojeda <[email protected]>
This is the next upgrade to the Rust toolchain, from 1.75.0 to 1.76.0 (i.e. the latest) [1]. See the upgrade policy [2] and the comments on the first upgrade in commit 3ed03f4 ("rust: upgrade to Rust 1.68.2"). No unstable features that we use were stabilized in Rust 1.76.0. The only unstable features allowed to be used outside the `kernel` crate are still `new_uninit,offset_of`, though other code to be upstreamed may increase the list. Please see [3] for details. `rustc` (and others) now warns when it cannot connect to the Make jobserver, thus mark those invocations as recursive as needed. Please see the previous commit for details. Rust 1.76.0 does not emit the `.debug_pub{names,types}` sections anymore for DWARFv4 [4][5]. For instance, in the uncompressed debug info case, this debug information took: samples/rust/rust_minimal.o ~64 KiB (~18% of total object size) rust/kernel.o ~92 KiB (~15%) rust/core.o ~114 KiB ( ~5%) In the compressed debug info (zlib) case: samples/rust/rust_minimal.o ~11 KiB (~6%) rust/kernel.o ~17 KiB (~5%) rust/core.o ~21 KiB (~1.5%) In addition, the `rustc_codegen_gcc` backend now does not emit the `.eh_frame` section when compiling under `-Cpanic=abort` [6], thus removing the need for the patch in the CI to compile the kernel [7]. Moreover, it also now emits the `.comment` section too [6]. The vast majority of changes are due to our `alloc` fork being upgraded at once. There are two kinds of changes to be aware of: the ones coming from upstream, which we should follow as closely as possible, and the updates needed in our added fallible APIs to keep them matching the newer infallible APIs coming from upstream. Instead of taking a look at the diff of this patch, an alternative approach is reviewing a diff of the changes between upstream `alloc` and the kernel's. This allows to easily inspect the kernel additions only, especially to check if the fallible methods we already have still match the infallible ones in the new version coming from upstream. Another approach is reviewing the changes introduced in the additions in the kernel fork between the two versions. This is useful to spot potentially unintended changes to our additions. To apply these approaches, one may follow steps similar to the following to generate a pair of patches that show the differences between upstream Rust and the kernel (for the subset of `alloc` we use) before and after applying this patch: # Get the difference with respect to the old version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > old.patch git -C linux restore rust/alloc # Apply this patch. git -C linux am rust-upgrade.patch # Get the difference with respect to the new version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > new.patch git -C linux restore rust/alloc Now one may check the `new.patch` to take a look at the additions (first approach) or at the difference between those two patches (second approach). For the latter, a side-by-side tool is recommended. Link: https://github.com/rust-lang/rust/blob/stable/RELEASES.md#version-1760-2024-02-08 [1] Link: https://rust-for-linux.com/rust-version-policy [2] Link: Rust-for-Linux#2 [3] Link: rust-lang/compiler-team#688 [4] Link: rust-lang/rust#117962 [5] Link: rust-lang/rust#118068 [6] Link: https://github.com/Rust-for-Linux/ci-rustc_codegen_gcc [7] Tested-by: Boqun Feng <[email protected]> Reviewed-by: Alice Ryhl <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Miguel Ojeda <[email protected]> (cherry picked from commit 6092708 https://github.com/AsahiLinux/linux) Signed-off-by: John Cabaj <[email protected]>
This is the next upgrade to the Rust toolchain, from 1.75.0 to 1.76.0 (i.e. the latest) [1]. See the upgrade policy [2] and the comments on the first upgrade in commit 3ed03f4 ("rust: upgrade to Rust 1.68.2"). No unstable features that we use were stabilized in Rust 1.76.0. The only unstable features allowed to be used outside the `kernel` crate are still `new_uninit,offset_of`, though other code to be upstreamed may increase the list. Please see [3] for details. `rustc` (and others) now warns when it cannot connect to the Make jobserver, thus mark those invocations as recursive as needed. Please see the previous commit for details. Rust 1.76.0 does not emit the `.debug_pub{names,types}` sections anymore for DWARFv4 [4][5]. For instance, in the uncompressed debug info case, this debug information took: samples/rust/rust_minimal.o ~64 KiB (~18% of total object size) rust/kernel.o ~92 KiB (~15%) rust/core.o ~114 KiB ( ~5%) In the compressed debug info (zlib) case: samples/rust/rust_minimal.o ~11 KiB (~6%) rust/kernel.o ~17 KiB (~5%) rust/core.o ~21 KiB (~1.5%) In addition, the `rustc_codegen_gcc` backend now does not emit the `.eh_frame` section when compiling under `-Cpanic=abort` [6], thus removing the need for the patch in the CI to compile the kernel [7]. Moreover, it also now emits the `.comment` section too [6]. The vast majority of changes are due to our `alloc` fork being upgraded at once. There are two kinds of changes to be aware of: the ones coming from upstream, which we should follow as closely as possible, and the updates needed in our added fallible APIs to keep them matching the newer infallible APIs coming from upstream. Instead of taking a look at the diff of this patch, an alternative approach is reviewing a diff of the changes between upstream `alloc` and the kernel's. This allows to easily inspect the kernel additions only, especially to check if the fallible methods we already have still match the infallible ones in the new version coming from upstream. Another approach is reviewing the changes introduced in the additions in the kernel fork between the two versions. This is useful to spot potentially unintended changes to our additions. To apply these approaches, one may follow steps similar to the following to generate a pair of patches that show the differences between upstream Rust and the kernel (for the subset of `alloc` we use) before and after applying this patch: # Get the difference with respect to the old version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > old.patch git -C linux restore rust/alloc # Apply this patch. git -C linux am rust-upgrade.patch # Get the difference with respect to the new version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > new.patch git -C linux restore rust/alloc Now one may check the `new.patch` to take a look at the additions (first approach) or at the difference between those two patches (second approach). For the latter, a side-by-side tool is recommended. Link: https://github.com/rust-lang/rust/blob/stable/RELEASES.md#version-1760-2024-02-08 [1] Link: https://rust-for-linux.com/rust-version-policy [2] Link: Rust-for-Linux#2 [3] Link: rust-lang/compiler-team#688 [4] Link: rust-lang/rust#117962 [5] Link: rust-lang/rust#118068 [6] Link: https://github.com/Rust-for-Linux/ci-rustc_codegen_gcc [7] Tested-by: Boqun Feng <[email protected]> Reviewed-by: Alice Ryhl <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Miguel Ojeda <[email protected]> (cherry picked from commit 6092708 https://github.com/AsahiLinux/linux) Signed-off-by: John Cabaj <[email protected]>
A continuation of #94181.
Fixes #48762
MCP can be found in rust-lang/compiler-team#688.
.debug_pubnames
and.debug_pubtypes
are poorly designed and peopleseldom use them. However, they take a considerable portion of size in
the final binary. This tells LLVM stop emitting those sections on
DWARFv4 or lower. DWARFv5 use
.debug_names
which is more concisein size and performant for name lookup.
Some other no-really-useful personal notes:
Details
Pepole saying they are not useful
Stop emitting
.debug_pubnames
and.debug_pubtypes
into Linux object files and binaries #48762https://rust-lang.zulipchat.com/#narrow/stream/317568-t-compiler.2Fwg-debugging/topic/investigating.20debuginfo.20size/near/342713604
DwarfCompileUnit::hasDwarfPubSections()
— https://github.com/llvm/llvm-project/blob/f633f325a1b808d33ca9653ed373353549ddcde6/llvm/lib/CodeGen/AsmPrinter/DwarfCompileUnit.cpp#L1477-L1494clang default to no debug name table when no option provided — https://github.com/llvm/llvm-project/blob/f633f325a1b808d33ca9653ed373353549ddcde6/clang/lib/Frontend/CompilerInvocation.cpp#L1819-L1824
GCC explicitly says GDB doesn't use pub sections (
TARGET_WANT_DEBUG_PUB_SECTIONS
only be true on Darwin) — https://github.com/gcc-mirror/gcc/blob/5d2a360f0a541646abb11efdbabc33c6a04de7ee/gcc/target.def#L6985-L6990 and https://github.com/bminor/binutils-gdb/blob/319b460545dc79280e2904dcc280057cf71fb753/gold/dwarf_reader.h#L424-L427Probably the only place that makes use of pub section in lldb — https://github.com/llvm/llvm-project/blob/725115d7bba2faf3d0c21442f4661dea77b8a77c/lldb/source/Plugins/SymbolFile/DWARF/SymbolFileDWARF.cpp#L2117-L2135
"The -gsplit-dwarf option requires -ggnu-pubnames." — https://github.com/gcc-mirror/gcc/blob/5d2a360f0a541646abb11efdbabc33c6a04de7ee/gcc/opts.cc#L1205
LLVM: Always emit
.debug_names
with dwarf 5 for Apple platforms — https://reviews.llvm.org/D118754