|
1 | 1 | //! Finding the dominators in a control-flow graph.
|
2 | 2 | //!
|
3 |
| -//! Algorithm based on Keith D. Cooper, Timothy J. Harvey, and Ken Kennedy, |
4 |
| -//! "A Simple, Fast Dominance Algorithm", |
5 |
| -//! Rice Computer Science TS-06-33870, |
6 |
| -//! <https://www.cs.rice.edu/~keith/EMBED/dom.pdf>. |
| 3 | +//! Algorithm based on Loukas Georgiadis, |
| 4 | +//! "Linear-Time Algorithms for Dominators and Related Problems", |
| 5 | +//! <ftp://ftp.cs.princeton.edu/techreports/2005/737.pdf> |
| 6 | +//! |
| 7 | +//! Additionally useful is the original Lengauer-Tarjan paper on this subject, |
| 8 | +//! "A Fast Algorithm for Finding Dominators in a Flowgraph" |
| 9 | +//! Thomas Lengauer and Robert Endre Tarjan. |
| 10 | +//! <https://www.cs.princeton.edu/courses/archive/spr03/cs423/download/dominators.pdf> |
7 | 11 |
|
8 |
| -use super::iterate::reverse_post_order; |
9 | 12 | use super::ControlFlowGraph;
|
10 | 13 | use rustc_index::vec::{Idx, IndexVec};
|
11 | 14 | use std::cmp::Ordering;
|
12 | 15 |
|
13 | 16 | #[cfg(test)]
|
14 | 17 | mod tests;
|
15 | 18 |
|
16 |
| -pub fn dominators<G: ControlFlowGraph>(graph: G) -> Dominators<G::Node> { |
17 |
| - let start_node = graph.start_node(); |
18 |
| - let rpo = reverse_post_order(&graph, start_node); |
19 |
| - dominators_given_rpo(graph, &rpo) |
| 19 | +struct PreOrderFrame<Iter> { |
| 20 | + pre_order_idx: PreorderIndex, |
| 21 | + iter: Iter, |
20 | 22 | }
|
21 | 23 |
|
22 |
| -fn dominators_given_rpo<G: ControlFlowGraph>(graph: G, rpo: &[G::Node]) -> Dominators<G::Node> { |
23 |
| - let start_node = graph.start_node(); |
24 |
| - assert_eq!(rpo[0], start_node); |
| 24 | +rustc_index::newtype_index! { |
| 25 | + struct PreorderIndex { .. } |
| 26 | +} |
25 | 27 |
|
| 28 | +pub fn dominators<G: ControlFlowGraph>(graph: G) -> Dominators<G::Node> { |
26 | 29 | // compute the post order index (rank) for each node
|
27 | 30 | let mut post_order_rank = IndexVec::from_elem_n(0, graph.num_nodes());
|
28 |
| - for (index, node) in rpo.iter().rev().cloned().enumerate() { |
29 |
| - post_order_rank[node] = index; |
30 |
| - } |
31 | 31 |
|
32 |
| - let mut immediate_dominators = IndexVec::from_elem_n(None, graph.num_nodes()); |
33 |
| - immediate_dominators[start_node] = Some(start_node); |
34 |
| - |
35 |
| - let mut changed = true; |
36 |
| - while changed { |
37 |
| - changed = false; |
38 |
| - |
39 |
| - for &node in &rpo[1..] { |
40 |
| - let mut new_idom = None; |
41 |
| - for pred in graph.predecessors(node) { |
42 |
| - if immediate_dominators[pred].is_some() { |
43 |
| - // (*) dominators for `pred` have been calculated |
44 |
| - new_idom = Some(if let Some(new_idom) = new_idom { |
45 |
| - intersect(&post_order_rank, &immediate_dominators, new_idom, pred) |
46 |
| - } else { |
47 |
| - pred |
48 |
| - }); |
49 |
| - } |
50 |
| - } |
| 32 | + // We allocate capacity for the full set of nodes, because most of the time |
| 33 | + // most of the nodes *are* reachable. |
| 34 | + let mut parent: IndexVec<PreorderIndex, PreorderIndex> = |
| 35 | + IndexVec::with_capacity(graph.num_nodes()); |
| 36 | + |
| 37 | + let mut stack = vec![PreOrderFrame { |
| 38 | + pre_order_idx: PreorderIndex::new(0), |
| 39 | + iter: graph.successors(graph.start_node()), |
| 40 | + }]; |
| 41 | + let mut pre_order_to_real: IndexVec<PreorderIndex, G::Node> = |
| 42 | + IndexVec::with_capacity(graph.num_nodes()); |
| 43 | + let mut real_to_pre_order: IndexVec<G::Node, Option<PreorderIndex>> = |
| 44 | + IndexVec::from_elem_n(None, graph.num_nodes()); |
| 45 | + pre_order_to_real.push(graph.start_node()); |
| 46 | + parent.push(PreorderIndex::new(0)); // the parent of the root node is the root for now. |
| 47 | + real_to_pre_order[graph.start_node()] = Some(PreorderIndex::new(0)); |
| 48 | + let mut post_order_idx = 0; |
| 49 | + |
| 50 | + // Traverse the graph, collecting a number of things: |
| 51 | + // |
| 52 | + // * Preorder mapping (to it, and back to the actual ordering) |
| 53 | + // * Postorder mapping (used exclusively for rank_partial_cmp on the final product) |
| 54 | + // * Parents for each vertex in the preorder tree |
| 55 | + // |
| 56 | + // These are all done here rather than through one of the 'standard' |
| 57 | + // graph traversals to help make this fast. |
| 58 | + 'recurse: while let Some(frame) = stack.last_mut() { |
| 59 | + while let Some(successor) = frame.iter.next() { |
| 60 | + if real_to_pre_order[successor].is_none() { |
| 61 | + let pre_order_idx = pre_order_to_real.push(successor); |
| 62 | + real_to_pre_order[successor] = Some(pre_order_idx); |
| 63 | + parent.push(frame.pre_order_idx); |
| 64 | + stack.push(PreOrderFrame { pre_order_idx, iter: graph.successors(successor) }); |
51 | 65 |
|
52 |
| - if new_idom != immediate_dominators[node] { |
53 |
| - immediate_dominators[node] = new_idom; |
54 |
| - changed = true; |
| 66 | + continue 'recurse; |
55 | 67 | }
|
56 | 68 | }
|
| 69 | + post_order_rank[pre_order_to_real[frame.pre_order_idx]] = post_order_idx; |
| 70 | + post_order_idx += 1; |
| 71 | + |
| 72 | + stack.pop(); |
57 | 73 | }
|
58 | 74 |
|
59 |
| - Dominators { post_order_rank, immediate_dominators } |
60 |
| -} |
| 75 | + let reachable_vertices = pre_order_to_real.len(); |
| 76 | + |
| 77 | + let mut idom = IndexVec::from_elem_n(PreorderIndex::new(0), reachable_vertices); |
| 78 | + let mut semi = IndexVec::from_fn_n(std::convert::identity, reachable_vertices); |
| 79 | + let mut label = semi.clone(); |
| 80 | + let mut bucket = IndexVec::from_elem_n(vec![], reachable_vertices); |
| 81 | + let mut lastlinked = None; |
| 82 | + |
| 83 | + // We loop over vertices in reverse preorder. This implements the pseudocode |
| 84 | + // of the simple Lengauer-Tarjan algorithm. A few key facts are noted here |
| 85 | + // which are helpful for understanding the code (full proofs and such are |
| 86 | + // found in various papers, including one cited at the top of this file). |
| 87 | + // |
| 88 | + // For each vertex w (which is not the root), |
| 89 | + // * semi[w] is a proper ancestor of the vertex w (i.e., semi[w] != w) |
| 90 | + // * idom[w] is an ancestor of semi[w] (i.e., idom[w] may equal semi[w]) |
| 91 | + // |
| 92 | + // An immediate dominator of w (idom[w]) is a vertex v where v dominates w |
| 93 | + // and every other dominator of w dominates v. (Every vertex except the root has |
| 94 | + // a unique immediate dominator.) |
| 95 | + // |
| 96 | + // A semidominator for a given vertex w (semi[w]) is the vertex v with minimum |
| 97 | + // preorder number such that there exists a path from v to w in which all elements (other than w) have |
| 98 | + // preorder numbers greater than w (i.e., this path is not the tree path to |
| 99 | + // w). |
| 100 | + for w in (PreorderIndex::new(1)..PreorderIndex::new(reachable_vertices)).rev() { |
| 101 | + // Optimization: process buckets just once, at the start of the |
| 102 | + // iteration. Do not explicitly empty the bucket (even though it will |
| 103 | + // not be used again), to save some instructions. |
| 104 | + // |
| 105 | + // The bucket here contains the vertices whose semidominator is the |
| 106 | + // vertex w, which we are guaranteed to have found: all vertices who can |
| 107 | + // be semidominated by w must have a preorder number exceeding w, so |
| 108 | + // they have been placed in the bucket. |
| 109 | + // |
| 110 | + // We compute a partial set of immediate dominators here. |
| 111 | + let z = parent[w]; |
| 112 | + for &v in bucket[z].iter() { |
| 113 | + // This uses the result of Lemma 5 from section 2 from the original |
| 114 | + // 1979 paper, to compute either the immediate or relative dominator |
| 115 | + // for a given vertex v. |
| 116 | + // |
| 117 | + // eval returns a vertex y, for which semi[y] is minimum among |
| 118 | + // vertices semi[v] +> y *> v. Note that semi[v] = z as we're in the |
| 119 | + // z bucket. |
| 120 | + // |
| 121 | + // Given such a vertex y, semi[y] <= semi[v] and idom[y] = idom[v]. |
| 122 | + // If semi[y] = semi[v], though, idom[v] = semi[v]. |
| 123 | + // |
| 124 | + // Using this, we can either set idom[v] to be: |
| 125 | + // * semi[v] (i.e. z), if semi[y] is z |
| 126 | + // * idom[y], otherwise |
| 127 | + // |
| 128 | + // We don't directly set to idom[y] though as it's not necessarily |
| 129 | + // known yet. The second preorder traversal will cleanup by updating |
| 130 | + // the idom for any that were missed in this pass. |
| 131 | + let y = eval(&mut parent, lastlinked, &semi, &mut label, v); |
| 132 | + idom[v] = if semi[y] < z { y } else { z }; |
| 133 | + } |
| 134 | + |
| 135 | + // This loop computes the semi[w] for w. |
| 136 | + semi[w] = w; |
| 137 | + for v in graph.predecessors(pre_order_to_real[w]) { |
| 138 | + let v = real_to_pre_order[v].unwrap(); |
| 139 | + |
| 140 | + // eval returns a vertex x from which semi[x] is minimum among |
| 141 | + // vertices semi[v] +> x *> v. |
| 142 | + // |
| 143 | + // From Lemma 4 from section 2, we know that the semidominator of a |
| 144 | + // vertex w is the minimum (by preorder number) vertex of the |
| 145 | + // following: |
| 146 | + // |
| 147 | + // * direct predecessors of w with preorder number less than w |
| 148 | + // * semidominators of u such that u > w and there exists (v, w) |
| 149 | + // such that u *> v |
| 150 | + // |
| 151 | + // This loop therefore identifies such a minima. Note that any |
| 152 | + // semidominator path to w must have all but the first vertex go |
| 153 | + // through vertices numbered greater than w, so the reverse preorder |
| 154 | + // traversal we are using guarantees that all of the information we |
| 155 | + // might need is available at this point. |
| 156 | + // |
| 157 | + // The eval call will give us semi[x], which is either: |
| 158 | + // |
| 159 | + // * v itself, if v has not yet been processed |
| 160 | + // * A possible 'best' semidominator for w. |
| 161 | + let x = eval(&mut parent, lastlinked, &semi, &mut label, v); |
| 162 | + semi[w] = std::cmp::min(semi[w], semi[x]); |
| 163 | + } |
| 164 | + // semi[w] is now semidominator(w) and won't change any more. |
61 | 165 |
|
62 |
| -fn intersect<Node: Idx>( |
63 |
| - post_order_rank: &IndexVec<Node, usize>, |
64 |
| - immediate_dominators: &IndexVec<Node, Option<Node>>, |
65 |
| - mut node1: Node, |
66 |
| - mut node2: Node, |
67 |
| -) -> Node { |
68 |
| - while node1 != node2 { |
69 |
| - while post_order_rank[node1] < post_order_rank[node2] { |
70 |
| - node1 = immediate_dominators[node1].unwrap(); |
| 166 | + // Optimization: Do not insert into buckets if parent[w] = semi[w], as |
| 167 | + // we then immediately know the idom. |
| 168 | + // |
| 169 | + // If we don't yet know the idom directly, then push this vertex into |
| 170 | + // our semidominator's bucket, where it will get processed at a later |
| 171 | + // stage to compute its immediate dominator. |
| 172 | + if parent[w] != semi[w] { |
| 173 | + bucket[semi[w]].push(w); |
| 174 | + } else { |
| 175 | + idom[w] = parent[w]; |
71 | 176 | }
|
72 | 177 |
|
73 |
| - while post_order_rank[node2] < post_order_rank[node1] { |
74 |
| - node2 = immediate_dominators[node2].unwrap(); |
| 178 | + // Optimization: We share the parent array between processed and not |
| 179 | + // processed elements; lastlinked represents the divider. |
| 180 | + lastlinked = Some(w); |
| 181 | + } |
| 182 | + |
| 183 | + // Finalize the idoms for any that were not fully settable during initial |
| 184 | + // traversal. |
| 185 | + // |
| 186 | + // If idom[w] != semi[w] then we know that we've stored vertex y from above |
| 187 | + // into idom[w]. It is known to be our 'relative dominator', which means |
| 188 | + // that it's one of w's ancestors and has the same immediate dominator as w, |
| 189 | + // so use that idom. |
| 190 | + for w in PreorderIndex::new(1)..PreorderIndex::new(reachable_vertices) { |
| 191 | + if idom[w] != semi[w] { |
| 192 | + idom[w] = idom[idom[w]]; |
75 | 193 | }
|
76 | 194 | }
|
77 | 195 |
|
78 |
| - node1 |
| 196 | + let mut immediate_dominators = IndexVec::from_elem_n(None, graph.num_nodes()); |
| 197 | + for (idx, node) in pre_order_to_real.iter_enumerated() { |
| 198 | + immediate_dominators[*node] = Some(pre_order_to_real[idom[idx]]); |
| 199 | + } |
| 200 | + |
| 201 | + Dominators { post_order_rank, immediate_dominators } |
| 202 | +} |
| 203 | + |
| 204 | +/// Evaluate the link-eval virtual forest, providing the currently minimum semi |
| 205 | +/// value for the passed `node` (which may be itself). |
| 206 | +/// |
| 207 | +/// This maintains that for every vertex v, `label[v]` is such that: |
| 208 | +/// |
| 209 | +/// ```text |
| 210 | +/// semi[eval(v)] = min { semi[label[u]] | root_in_forest(v) +> u *> v } |
| 211 | +/// ``` |
| 212 | +/// |
| 213 | +/// where `+>` is a proper ancestor and `*>` is just an ancestor. |
| 214 | +#[inline] |
| 215 | +fn eval( |
| 216 | + ancestor: &mut IndexVec<PreorderIndex, PreorderIndex>, |
| 217 | + lastlinked: Option<PreorderIndex>, |
| 218 | + semi: &IndexVec<PreorderIndex, PreorderIndex>, |
| 219 | + label: &mut IndexVec<PreorderIndex, PreorderIndex>, |
| 220 | + node: PreorderIndex, |
| 221 | +) -> PreorderIndex { |
| 222 | + if is_processed(node, lastlinked) { |
| 223 | + compress(ancestor, lastlinked, semi, label, node); |
| 224 | + label[node] |
| 225 | + } else { |
| 226 | + node |
| 227 | + } |
| 228 | +} |
| 229 | + |
| 230 | +#[inline] |
| 231 | +fn is_processed(v: PreorderIndex, lastlinked: Option<PreorderIndex>) -> bool { |
| 232 | + if let Some(ll) = lastlinked { v >= ll } else { false } |
| 233 | +} |
| 234 | + |
| 235 | +#[inline] |
| 236 | +fn compress( |
| 237 | + ancestor: &mut IndexVec<PreorderIndex, PreorderIndex>, |
| 238 | + lastlinked: Option<PreorderIndex>, |
| 239 | + semi: &IndexVec<PreorderIndex, PreorderIndex>, |
| 240 | + label: &mut IndexVec<PreorderIndex, PreorderIndex>, |
| 241 | + v: PreorderIndex, |
| 242 | +) { |
| 243 | + assert!(is_processed(v, lastlinked)); |
| 244 | + let u = ancestor[v]; |
| 245 | + if is_processed(u, lastlinked) { |
| 246 | + compress(ancestor, lastlinked, semi, label, u); |
| 247 | + if semi[label[u]] < semi[label[v]] { |
| 248 | + label[v] = label[u]; |
| 249 | + } |
| 250 | + ancestor[v] = ancestor[u]; |
| 251 | + } |
79 | 252 | }
|
80 | 253 |
|
81 | 254 | #[derive(Clone, Debug)]
|
|
0 commit comments