Skip to content

Commit 9a9695a

Browse files
committed
rustdoc-search: use set ops for ranking and filtering
This commit adds ranking and quick filtering to type-based search, improving performance and having it order results based on their type signatures. Motivation ---------- If I write a query like `str -> String`, a lot of functions come up. That's to be expected, but `String::from_str` should come up on top, and it doesn't right now. This is because the sorting algorithm is based on the functions name, and doesn't consider the type signature at all. `slice::join` even comes up above it! To fix this, the sorting should take into account the function's signature, and the closer match should come up on top. Guide-level description ----------------------- When searching by type signature, types with a "closer" match will show up above types that match less precisely. Reference-level explanation --------------------------- Functions signature search works in three major phases: * A compact "fingerprint," based on the [bloom filter] technique, is used to check for matches and to estimate the distance. It sometimes has false positive matches, but it also operates on 128 bit contiguous memory and requires no backtracking, so it performs a lot better than real unification. The fingerprint represents the set of items in the type signature, but it does not represent nesting, and it ignores when the same item appears more than once. The result is rejected if any query bits are absent in the function, or if the distance is higher than the current maximum and 200 results have already been found. * The second step performs unification. This is where nesting and true bag semantics are taken into account, and it has no false positives. It uses a recursive, backtracking algorithm. The result is rejected if any query elements are absent in the function. [bloom filter]: https://en.wikipedia.org/wiki/Bloom_filter Drawbacks --------- This makes the code bigger. More than that, this design is a subtle trade-off. It makes the cases I've tested against measurably faster, but it's not clear how well this extends to other crates with potentially more functions and fewer types. The more complex things get, the more important it is to gather a good set of data to test with (this is arguably more important than the actual benchmarking ifrastructure right now). Rationale and alternatives -------------------------- Throwing a bloom filter in front makes it faster. More than that, it tries to take a tactic where the system can not only check for potential matches, but also gets an accurate distance function without needing to do unification. That way it can skip unification even on items that have the needed elems, as long as they have more items than the currently found maximum. If I didn't want to be able to cheaply do set operations on the fingerprint, a [cuckoo filter] is supposed to have better performance. But the nice bit-banging set intersection doesn't work AFAIK. I also looked into [minhashing], but since it's actually an unbiased estimate of the similarity coefficient, I'm not sure how it could be used to skip unification (I wouldn't know if the estimate was too low or too high). This function actually uses the number of distinct items as its "distance function." This should give the same results that it would have gotten from a Jaccard Distance $1-\frac{|F\cap{}Q|}{|F\cup{}Q|}$, while being cheaper to compute. This is because: * The function $F$ must be a superset of the query $Q$, so their union is just $F$ and the intersection is $Q$ and it can be reduced to $1-\frac{|Q|}{|F|}. * There are no magic thresholds. These values are only being used to compare against each other while sorting (and, if 200 results are found, to compare with the maximum match). This means we only care if one value is bigger than the other, not what it's actual value is, and since $Q$ is the same for everything, it can be safely left out, reducing the formula to $1-\frac{1}{|F|} = \frac{|F|}{|F|}-\frac{1}{|F|} = |F|-1$. And, since the values are only being compared with each other, $|F|$ is fine. Prior art --------- This is significantly different from how Hoogle does it. It doesn't account for order, and it has no special account for nesting, though `Box<t>` is still two items, while `t` is only one. This should give the same results that it would have gotten from a Jaccard Distance $1-\frac{|A\cap{}B|}{|A\cup{}B|}$, while being cheaper to compute. Unresolved questions -------------------- `[]` and `()`, the slice/array and tuple/union operators, are ignored while building the signature for the query. This is because they match more than one thing, making them ambiguous. Unfortunately, this also makes them a performance cliff. Is this likely to be a problem? Right now, the system just stashes the type distance into the same field that levenshtein distance normally goes in. This means exact query matches show up on top (for example, if you have a function like `fn nothing(a: Nothing, b: i32)`, then searching for `nothing` will show it on top even if there's another function with `fn bar(x: Nothing)` that's technically a closer match in type signature. Future possibilities -------------------- It should be possible to adopt more sorting criteria to act as a tie breaker, which could be determined during unification. [cuckoo filter]: https://en.wikipedia.org/wiki/Cuckoo_filter [minhashing]: https://en.wikipedia.org/wiki/MinHash
1 parent fd1d256 commit 9a9695a

File tree

9 files changed

+304
-56
lines changed

9 files changed

+304
-56
lines changed

src/librustdoc/html/static/js/externs.js

+2-1
Original file line numberDiff line numberDiff line change
@@ -14,7 +14,7 @@ function initSearch(searchIndex){}
1414
* pathWithoutLast: Array<string>,
1515
* pathLast: string,
1616
* generics: Array<QueryElement>,
17-
* bindings: Map<(string|integer), Array<QueryElement>>,
17+
* bindings: Map<integer, Array<QueryElement>>,
1818
* }}
1919
*/
2020
let QueryElement;
@@ -42,6 +42,7 @@ let ParserState;
4242
* totalElems: number,
4343
* literalSearch: boolean,
4444
* corrections: Array<{from: string, to: integer}>,
45+
* typeFingerprint: Uint32Array,
4546
* }}
4647
*/
4748
let ParsedQuery;

src/librustdoc/html/static/js/search.js

+185-40
Original file line numberDiff line numberDiff line change
@@ -238,6 +238,10 @@ function initSearch(rawSearchIndex) {
238238
* @type {Array<Row>}
239239
*/
240240
let searchIndex;
241+
/**
242+
* @type {Uint32Array}
243+
*/
244+
let functionTypeFingerprint;
241245
let currentResults;
242246
/**
243247
* Map from normalized type names to integers. Used to make type search
@@ -1038,6 +1042,8 @@ function initSearch(rawSearchIndex) {
10381042
correction: null,
10391043
proposeCorrectionFrom: null,
10401044
proposeCorrectionTo: null,
1045+
// bloom filter build from type ids
1046+
typeFingerprint: new Uint32Array(4),
10411047
};
10421048
}
10431049

@@ -1133,7 +1139,6 @@ function initSearch(rawSearchIndex) {
11331139
query.error = err;
11341140
return query;
11351141
}
1136-
11371142
if (!query.literalSearch) {
11381143
// If there is more than one element in the query, we switch to literalSearch in any
11391144
// case.
@@ -1941,8 +1946,7 @@ function initSearch(rawSearchIndex) {
19411946
* @param {integer} path_dist
19421947
*/
19431948
function addIntoResults(results, fullId, id, index, dist, path_dist, maxEditDistance) {
1944-
const inBounds = dist <= maxEditDistance || index !== -1;
1945-
if (dist === 0 || (!parsedQuery.literalSearch && inBounds)) {
1949+
if (dist <= maxEditDistance || index !== -1) {
19461950
if (results.has(fullId)) {
19471951
const result = results.get(fullId);
19481952
if (result.dontValidate || result.dist <= dist) {
@@ -1990,17 +1994,37 @@ function initSearch(rawSearchIndex) {
19901994
const fullId = row.id;
19911995
const searchWord = searchWords[pos];
19921996

1993-
const in_args = row.type && row.type.inputs
1994-
&& checkIfInList(row.type.inputs, elem, row.type.where_clause);
1995-
if (in_args) {
1996-
// path_dist is 0 because no parent path information is currently stored
1997-
// in the search index
1998-
addIntoResults(results_in_args, fullId, pos, -1, 0, 0, maxEditDistance);
1999-
}
2000-
const returned = row.type && row.type.output
2001-
&& checkIfInList(row.type.output, elem, row.type.where_clause);
2002-
if (returned) {
2003-
addIntoResults(results_returned, fullId, pos, -1, 0, 0, maxEditDistance);
1997+
// fpDist is a minimum possible type distance, where "type distance" is the number of
1998+
// atoms in the function not present in the query
1999+
const tfpDist = compareTypeFingerprints(
2000+
fullId,
2001+
parsedQuery.typeFingerprint
2002+
);
2003+
if (tfpDist !== null &&
2004+
!(results_in_args.size >= MAX_RESULTS && tfpDist > results_in_args.max_dist)
2005+
) {
2006+
const in_args = row.type && row.type.inputs
2007+
&& checkIfInList(row.type.inputs, elem, row.type.where_clause);
2008+
if (in_args) {
2009+
results_in_args.max_dist = Math.max(results_in_args.max_dist || 0, tfpDist);
2010+
const maxDist = results_in_args.size < MAX_RESULTS ?
2011+
(tfpDist + 1) :
2012+
results_in_args.max_dist;
2013+
addIntoResults(results_in_args, fullId, pos, -1, tfpDist, 0, maxDist);
2014+
}
2015+
}
2016+
if (tfpDist !== false &&
2017+
!(results_returned.size >= MAX_RESULTS && tfpDist > results_returned.max_dist)
2018+
) {
2019+
const returned = row.type && row.type.output
2020+
&& checkIfInList(row.type.output, elem, row.type.where_clause);
2021+
if (returned) {
2022+
results_returned.max_dist = Math.max(results_returned.max_dist || 0, tfpDist);
2023+
const maxDist = results_returned.size < MAX_RESULTS ?
2024+
(tfpDist + 1) :
2025+
results_returned.max_dist;
2026+
addIntoResults(results_returned, fullId, pos, -1, tfpDist, 0, maxDist);
2027+
}
20042028
}
20052029

20062030
if (!typePassesFilter(elem.typeFilter, row.ty)) {
@@ -2059,6 +2083,17 @@ function initSearch(rawSearchIndex) {
20592083
return;
20602084
}
20612085

2086+
const tfpDist = compareTypeFingerprints(
2087+
row.id,
2088+
parsedQuery.typeFingerprint
2089+
);
2090+
if (tfpDist === null) {
2091+
return;
2092+
}
2093+
if (results.size >= MAX_RESULTS && tfpDist > results.max_dist) {
2094+
return;
2095+
}
2096+
20622097
// If the result is too "bad", we return false and it ends this search.
20632098
if (!unifyFunctionTypes(
20642099
row.type.inputs,
@@ -2077,7 +2112,8 @@ function initSearch(rawSearchIndex) {
20772112
return;
20782113
}
20792114

2080-
addIntoResults(results, row.id, pos, 0, 0, 0, Number.MAX_VALUE);
2115+
results.max_dist = Math.max(results.max_dist || 0, tfpDist);
2116+
addIntoResults(results, row.id, pos, 0, tfpDist, 0, Number.MAX_VALUE);
20812117
}
20822118

20832119
function innerRunQuery() {
@@ -2197,14 +2233,17 @@ function initSearch(rawSearchIndex) {
21972233
);
21982234
}
21992235

2236+
const fps = new Set();
22002237
for (const elem of parsedQuery.elems) {
22012238
convertNameToId(elem);
2239+
buildFunctionTypeFingerprint(elem, parsedQuery.typeFingerprint, fps);
22022240
}
22032241
for (const elem of parsedQuery.returned) {
22042242
convertNameToId(elem);
2243+
buildFunctionTypeFingerprint(elem, parsedQuery.typeFingerprint, fps);
22052244
}
22062245

2207-
if (parsedQuery.foundElems === 1) {
2246+
if (parsedQuery.foundElems === 1 && parsedQuery.returned.length === 0) {
22082247
if (parsedQuery.elems.length === 1) {
22092248
const elem = parsedQuery.elems[0];
22102249
for (let i = 0, nSearchWords = searchWords.length; i < nSearchWords; ++i) {
@@ -2220,26 +2259,6 @@ function initSearch(rawSearchIndex) {
22202259
maxEditDistance
22212260
);
22222261
}
2223-
} else if (parsedQuery.returned.length === 1) {
2224-
// We received one returned argument to check, so looking into returned values.
2225-
for (let i = 0, nSearchWords = searchWords.length; i < nSearchWords; ++i) {
2226-
const row = searchIndex[i];
2227-
const in_returned = row.type && unifyFunctionTypes(
2228-
row.type.output,
2229-
parsedQuery.returned,
2230-
row.type.where_clause
2231-
);
2232-
if (in_returned) {
2233-
addIntoResults(
2234-
results_others,
2235-
row.id,
2236-
i,
2237-
-1,
2238-
0,
2239-
Number.MAX_VALUE
2240-
);
2241-
}
2242-
}
22432262
}
22442263
} else if (parsedQuery.foundElems > 0) {
22452264
for (let i = 0, nSearchWords = searchWords.length; i < nSearchWords; ++i) {
@@ -2783,6 +2802,97 @@ ${item.displayPath}<span class="${type}">${name}</span>\
27832802
};
27842803
}
27852804

2805+
/**
2806+
* Type fingerprints allow fast, approximate matching of types.
2807+
*
2808+
* This algo creates a compact representation of the type set using a Bloom filter.
2809+
* This fingerprint is used three ways:
2810+
*
2811+
* - It accelerates the matching algorithm by checking the function fingerprint against the
2812+
* query fingerprint. If any bits are set in the query but not in the function, it can't
2813+
* match.
2814+
*
2815+
* - The fourth section has the number of distinct items in the set.
2816+
* This is the distance function, used for filtering and for sorting.
2817+
*
2818+
* [^1]: Distance is the relatively naive metric of counting the number of distinct items in
2819+
* the function that are not present in the query.
2820+
*
2821+
* @param {FunctionType|QueryElement} type - a single type
2822+
* @param {Uint32Array} output - write the fingerprint to this data structure: uses 128 bits
2823+
* @param {Set<number>} fps - Set of distinct items
2824+
*/
2825+
function buildFunctionTypeFingerprint(type, output, fps) {
2826+
2827+
let input = type.id;
2828+
// All forms of `[]` get collapsed down to one thing in the bloom filter.
2829+
// Differentiating between arrays and slices, if the user asks for it, is
2830+
// still done in the matching algorithm.
2831+
if (input === typeNameIdOfArray || input === typeNameIdOfSlice) {
2832+
input = typeNameIdOfArrayOrSlice;
2833+
}
2834+
if (input !== null) {
2835+
// https://docs.rs/rustc-hash/1.1.0/src/rustc_hash/lib.rs.html#60
2836+
// Rotate is skipped because we're only doing one cycle anyway.
2837+
const h0 = Math.imul(input, 0x9e3779b9);
2838+
const h1 = Math.imul(479001599 ^ input, 0x9e3779b9);
2839+
const h2 = Math.imul(433494437 ^ input, 0x9e3779b9);
2840+
output[0] |= 1 << (h0 % 32);
2841+
output[1] |= 1 << (h1 % 32);
2842+
output[2] |= 1 << (h2 % 32);
2843+
fps.add(input);
2844+
}
2845+
for (const g of type.generics) {
2846+
buildFunctionTypeFingerprint(g, output, fps);
2847+
}
2848+
const fb = {
2849+
id: null,
2850+
ty: 0,
2851+
generics: [],
2852+
bindings: new Map(),
2853+
};
2854+
for (const [k, v] of type.bindings.entries()) {
2855+
fb.id = k;
2856+
fb.generics = v;
2857+
buildFunctionTypeFingerprint(fb, output, fps);
2858+
}
2859+
output[3] = fps.size;
2860+
}
2861+
2862+
/**
2863+
* Compare the query fingerprint with the function fingerprint.
2864+
*
2865+
* @param {{number}} fullId - The function
2866+
* @param {{Uint32Array}} queryFingerprint - The query
2867+
* @returns {number|null} - Null if non-match, number if distance
2868+
* This function might return 0!
2869+
*/
2870+
function compareTypeFingerprints(fullId, queryFingerprint) {
2871+
2872+
const fh0 = functionTypeFingerprint[fullId * 4];
2873+
const fh1 = functionTypeFingerprint[(fullId * 4) + 1];
2874+
const fh2 = functionTypeFingerprint[(fullId * 4) + 2];
2875+
const [qh0, qh1, qh2] = queryFingerprint;
2876+
// Approximate set intersection with bloom filters.
2877+
// This can be larger than reality, not smaller, because hashes have
2878+
// the property that if they've got the same value, they hash to the
2879+
// same thing. False positives exist, but not false negatives.
2880+
const [in0, in1, in2] = [fh0 & qh0, fh1 & qh1, fh2 & qh2];
2881+
// Approximate the set of items in the query but not the function.
2882+
// This might be smaller than reality, but cannot be bigger.
2883+
//
2884+
// | in_ | qh_ | XOR | Meaning |
2885+
// | --- | --- | --- | ------------------------------------------------ |
2886+
// | 0 | 0 | 0 | Not present |
2887+
// | 1 | 0 | 1 | IMPOSSIBLE because `in_` is `fh_ & qh_` |
2888+
// | 1 | 1 | 0 | If one or both is false positive, false negative |
2889+
// | 0 | 1 | 1 | Since in_ has no false negatives, must be real |
2890+
if ((in0 ^ qh0) || (in1 ^ qh1) || (in2 ^ qh2)) {
2891+
return null;
2892+
}
2893+
return functionTypeFingerprint[(fullId * 4) + 3];
2894+
}
2895+
27862896
function buildIndex(rawSearchIndex) {
27872897
searchIndex = [];
27882898
/**
@@ -2802,6 +2912,22 @@ ${item.displayPath}<span class="${type}">${name}</span>\
28022912
typeNameIdOfSlice = buildTypeMapIndex("slice");
28032913
typeNameIdOfArrayOrSlice = buildTypeMapIndex("[]");
28042914

2915+
// Function type fingerprints are 128-bit bloom filters that are used to
2916+
// estimate the distance between function and query.
2917+
// This loop counts the number of items to allocate a fingerprint for.
2918+
for (const crate in rawSearchIndex) {
2919+
if (!hasOwnPropertyRustdoc(rawSearchIndex, crate)) {
2920+
continue;
2921+
}
2922+
// Each item gets an entry in the fingerprint array, and the crate
2923+
// does, too
2924+
id += rawSearchIndex[crate].t.length + 1;
2925+
}
2926+
functionTypeFingerprint = new Uint32Array((id + 1) * 4);
2927+
2928+
// This loop actually generates the search item indexes, including
2929+
// normalized names, type signature objects and fingerprints, and aliases.
2930+
id = 0;
28052931
for (const crate in rawSearchIndex) {
28062932
if (!hasOwnPropertyRustdoc(rawSearchIndex, crate)) {
28072933
continue;
@@ -2951,17 +3077,36 @@ ${item.displayPath}<span class="${type}">${name}</span>\
29513077
}
29523078
searchWords.push(word);
29533079
const path = itemPaths.has(i) ? itemPaths.get(i) : lastPath;
3080+
let type = null;
3081+
if (itemFunctionSearchTypes[i] !== 0) {
3082+
type = buildFunctionSearchType(
3083+
itemFunctionSearchTypes[i],
3084+
lowercasePaths
3085+
);
3086+
if (type) {
3087+
const fp = functionTypeFingerprint.subarray(id * 4, (id + 1) * 4);
3088+
const fps = new Set();
3089+
for (const t of type.inputs) {
3090+
buildFunctionTypeFingerprint(t, fp, fps);
3091+
}
3092+
for (const t of type.output) {
3093+
buildFunctionTypeFingerprint(t, fp, fps);
3094+
}
3095+
for (const w of type.where_clause) {
3096+
for (const t of w) {
3097+
buildFunctionTypeFingerprint(t, fp, fps);
3098+
}
3099+
}
3100+
}
3101+
}
29543102
const row = {
29553103
crate: crate,
29563104
ty: itemTypes.charCodeAt(i) - charA,
29573105
name: itemNames[i],
29583106
path: path,
29593107
desc: itemDescs[i],
29603108
parent: itemParentIdxs[i] > 0 ? paths[itemParentIdxs[i] - 1] : undefined,
2961-
type: buildFunctionSearchType(
2962-
itemFunctionSearchTypes[i],
2963-
lowercasePaths
2964-
),
3109+
type,
29653110
id: id,
29663111
normalizedName: word.indexOf("_") === -1 ? word : word.replace(/_/g, ""),
29673112
deprecated: deprecatedItems.has(i),

tests/rustdoc-js/assoc-type.js

+3-3
Original file line numberDiff line numberDiff line change
@@ -7,16 +7,16 @@ const EXPECTED = [
77
'query': 'iterator<something> -> u32',
88
'correction': null,
99
'others': [
10-
{ 'path': 'assoc_type', 'name': 'my_fn' },
1110
{ 'path': 'assoc_type::my', 'name': 'other_fn' },
11+
{ 'path': 'assoc_type', 'name': 'my_fn' },
1212
],
1313
},
1414
{
1515
'query': 'iterator<something>',
1616
'correction': null,
1717
'in_args': [
18-
{ 'path': 'assoc_type', 'name': 'my_fn' },
1918
{ 'path': 'assoc_type::my', 'name': 'other_fn' },
19+
{ 'path': 'assoc_type', 'name': 'my_fn' },
2020
],
2121
},
2222
{
@@ -26,8 +26,8 @@ const EXPECTED = [
2626
{ 'path': 'assoc_type', 'name': 'Something' },
2727
],
2828
'in_args': [
29-
{ 'path': 'assoc_type', 'name': 'my_fn' },
3029
{ 'path': 'assoc_type::my', 'name': 'other_fn' },
30+
{ 'path': 'assoc_type', 'name': 'my_fn' },
3131
],
3232
},
3333
// if I write an explicit binding, only it shows up

0 commit comments

Comments
 (0)