You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Auto merge of #100603 - tmandry:zst-guards, r=dtolnay
Optimize away poison guards when std is built with panic=abort
> **Note**: To take advantage of this PR, you will have to use `-Zbuild-std` or build your own toolchain. rustup toolchains always link to a libstd that was compiled with `panic=unwind`, since it's compatible with `panic=abort` code.
When std is compiled with `panic=abort` we can remove a lot of the poison machinery from the locks. This changes the `Flag` and `Guard` types to be ZSTs. It also adds an uninhabited member to `PoisonError` so the compiler knows it can optimize away the `Result::Err` paths, and make `LockResult<T>` layout-equivalent to `T`.
### Is this a breaking change?
`PoisonError::new` now panics if invoked from a libstd built with `panic="abort"` (or any non-`unwind` strategy). It is unclear to me whether to consider this a breaking change.
In order to encounter this behavior, **both of the following must be true**:
#### Using a libstd with `panic="abort"`
This is pretty uncommon. We don't build libstd with that in rustup, except in (Tier 2-3) platforms that do not support unwinding, **most notably wasm**.
Most people who do this are using cargo's `-Z build-std` feature, which is unstable.
`panic="abort"` is not a supported option in Rust's build system. It is possible to configure it using `CARGO_TARGET_xxx_RUSTFLAGS`, but I believe this only works on **non-host** platforms.
#### Creating `PoisonError` manually
This is also unlikely. The only common use case I can think of is in tests, and you can't run tests with `panic="abort"` without the unstable `-Z panic_abort_tests` flag.
It's possible that someone is implementing their own locks using std's `PoisonError` **and** defining "thread failure" to mean something other than "panic". If this is the case then we would break their code if it was used with a `panic="abort"` libstd. The locking crates I know of don't replicate std's poison API, but I haven't done much research into this yet.
I've touched on a fair number of considerations here. Which ones do people consider relevant?
0 commit comments