MonoPlace3D: Learning 3D-Aware Object Placement for 3D Monocular Detection (CVPR 2025) [paper]
Rishubh Parihar, Srinjay Sarkar, Sarthak Vora, Jogendra Kundu, R. Venkatesh Babu.
Please refer to INSTALL.md for installation and to DATA.md for data preparation.
Move to root and train the network with $EXP_NAME:
cd Placement #MonoPlace3D_ROOT
CUDA_VISIBLE_DEVICES=$GPUS python scripts/train.py --config=$CONFIG_PATH --experiment_name=$EXP_NAMETo evaluate on the validation set using checkpoint $CHECKPOINT_PATH:
CUDA_VISIBLE_DEVICES=$GPU python3 scripts/eval.py --config=$CONFIG_PATH --gpu=0 --checkpoint_path=$CKPT_PATH --split_to_test=$SPLIT wget -c https://download.blender.org/release/Blender2.78/blender-2.78-linux-glibc219-x86_64.tar.bz2
wget -c https://download.blender.org/release/Blender2.78/blender-2.78-linux-glibc219-x86_64.tar.bz2cd Rendering
blender <PATH TO BLENDER FILE> --background --python KITTI_shapenet_render_cars.py --root=$LABEL_PATH --render_path=$RENDERED_IMAGE_PATH --start_idx 0cd Rendering
blender <PATH TO BLENDER FILE> --background --python KITTI_shapenet_render_shadows.py --root=$LABEL_PATH --render_path=$RENDERED_IMAGE_PATH --start_idx 0cd Rendering
python render_cars_with_shadow.py --label_path=$LABEL_PATH --img_path=$IMAGE_2_PATH --render_car_path=$RENDER_CAR_PATH --render_transformed_cars_path=$RENDER_CARS_TRANS_PATH --img_save_path=$IMG_PATH --start_idx 0Please refer to the code of MonoDLE and GUPNet.
If you find our work useful in your research, please consider citing:
@misc{rishubh2025monoplace3D,
title={MonoPlace3D: Learning 3D-Aware Object Placement for 3D Monocular Detection},
author={Rishubh Parihar,Srinjay Sarkar,Sarthak Vora,Jogendra Kundu,R. Venkatesh Babu},
journal={Conference on Computer Vision and Pattern Recognition},
year={2025},
}
This project is released under the MIT License.
