Skip to content

rishubhpar/mp3D

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MonoPlace3D

MonoPlace3D: Learning 3D-Aware Object Placement for 3D Monocular Detection (CVPR 2025) [paper]
Rishubh Parihar, Srinjay Sarkar, Sarthak Vora, Jogendra Kundu, R. Venkatesh Babu.

vis

Setup

Please refer to INSTALL.md for installation and to DATA.md for data preparation.

Train Placement Network

Move to root and train the network with $EXP_NAME:

 cd Placement #MonoPlace3D_ROOT
 CUDA_VISIBLE_DEVICES=$GPUS python scripts/train.py --config=$CONFIG_PATH --experiment_name=$EXP_NAME

Eval Placement Network

To evaluate on the validation set using checkpoint $CHECKPOINT_PATH:

CUDA_VISIBLE_DEVICES=$GPU python3 scripts/eval.py --config=$CONFIG_PATH --gpu=0 --checkpoint_path=$CKPT_PATH --split_to_test=$SPLIT 

Download Blender and ShapNet dataset

wget -c https://download.blender.org/release/Blender2.78/blender-2.78-linux-glibc219-x86_64.tar.bz2

wget -c https://download.blender.org/release/Blender2.78/blender-2.78-linux-glibc219-x86_64.tar.bz2

Render ShapeNet Cars

cd Rendering
blender <PATH TO BLENDER FILE> --background --python KITTI_shapenet_render_cars.py --root=$LABEL_PATH --render_path=$RENDERED_IMAGE_PATH --start_idx 0

Render Car Shadows

cd Rendering
blender <PATH TO BLENDER FILE> --background --python KITTI_shapenet_render_shadows.py --root=$LABEL_PATH --render_path=$RENDERED_IMAGE_PATH --start_idx 0

Place rendered ShapeNet/ControlNet Cars with Shadow in the scene

cd Rendering
python render_cars_with_shadow.py --label_path=$LABEL_PATH --img_path=$IMAGE_2_PATH --render_car_path=$RENDER_CAR_PATH --render_transformed_cars_path=$RENDER_CARS_TRANS_PATH --img_save_path=$IMG_PATH --start_idx 0

Train Object Detection Network

Please refer to the code of MonoDLE and GUPNet.

Citation

If you find our work useful in your research, please consider citing:

@misc{rishubh2025monoplace3D,
      title={MonoPlace3D: Learning 3D-Aware Object Placement for 3D Monocular Detection},
      author={Rishubh Parihar,Srinjay Sarkar,Sarthak Vora,Jogendra Kundu,R. Venkatesh Babu},
      journal={Conference on Computer Vision and Pattern Recognition},      
      year={2025}, 
}

License

This project is released under the MIT License.

About

This repo will contain codebase of monoplace 3D paper accepted at CVPR 2025

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published