A production-ready template for developing Model Context Protocol (MCP) servers using Python and FastMCP. This server provides a foundation for creating MCP-compliant servers with comprehensive examples of tools, structured logging, configuration management, and containerized deployment.
The template includes three example MCP tools: a multiply calculator, a code review prompt generator, and a Red Hat logo resource handler. It demonstrates best practices for MCP server development including proper error handling, health checks, multiple transport protocols (HTTP, SSE, streamable-HTTP), SSL support, and comprehensive development tooling.
graph TB
subgraph "External Clients"
A[Claude Code/LLM Client]
B[Custom MCP Client]
C[Development Tools]
end
subgraph "Network Layer"
D[Load Balancer/Proxy]
E[SSL Termination]
end
subgraph "Template MCP Server"
subgraph "Application Layer"
F[FastAPI Application<br/>api.py]
G[Health Check Endpoint<br/>/health]
H[MCP Protocol Handler<br/>/mcp]
end
subgraph "MCP Core"
I[TemplateMCPServer<br/>mcp.py]
J[FastMCP Instance<br/>Protocol Implementation]
K[Tool Registry<br/>Dynamic Registration]
end
subgraph "Tool Layer"
L[Mathematical Tools<br/>multiply_numbers]
M[Resource Tools<br/>redhat_logo]
N[Prompt Tools<br/>code_review_prompt]
O[Custom Tools<br/>Extensible]
end
subgraph "Infrastructure Layer"
P[Configuration Management<br/>settings.py]
Q[Structured Logging<br/>pylogger.py]
R[Error Handling<br/>Exception Management]
S[Asset Management<br/>Static Resources]
end
subgraph "Transport Layer"
T[HTTP Transport]
U[SSE Transport]
V[Streamable HTTP Transport]
end
end
subgraph "External Dependencies"
W[Environment Variables<br/>.env]
X[SSL Certificates<br/>TLS/HTTPS]
Y[Static Assets<br/>Images/Files]
Z[Container Runtime<br/>Docker/Podman]
end
A --> D
B --> D
C --> D
D --> E
E --> F
F --> G
F --> H
H --> I
I --> J
J --> K
K --> L
K --> M
K --> N
K --> O
I --> P
I --> Q
I --> R
M --> S
F --> T
F --> U
F --> V
P --> W
E --> X
S --> Y
Z --> F
classDef client fill:#e3f2fd
classDef network fill:#f3e5f5
classDef application fill:#e8f5e8
classDef core fill:#fff3e0
classDef tools fill:#fce4ec
classDef infrastructure fill:#f1f8e9
classDef transport fill:#fef7e0
classDef external fill:#f5f5f5
class A,B,C client
class D,E network
class F,G,H application
class I,J,K core
class L,M,N,O tools
class P,Q,R,S infrastructure
class T,U,V transport
class W,X,Y,Z external
flowchart TD
A[MCP Client Request] --> B{Transport Protocol?}
B -->|HTTP/Streamable-HTTP| C[FastAPI App<br/>api.py]
B -->|SSE| D[SSE App<br/>create_sse_app]
C --> E[Health Check?]
D --> E
E -->|/health| F[Health Endpoint<br/>Return Status]
E -->|/mcp| G[MCP Request Handler<br/>FastMCP Instance]
G --> H{MCP Method Type?}
H -->|tools/list| I[List Available Tools<br/>Return tool definitions]
H -->|tools/call| J[Tool Execution Router<br/>mcp.py]
J --> K{Which Tool?}
K -->|multiply_numbers| L[Multiply Tool<br/>multiply_tool.py]
K -->|read_redhat_logo_content| M[Logo Resource Tool<br/>redhat_logo.py]
K -->|get_code_review_prompt| N[Code Review Prompt<br/>code_review_prompt_tool.py]
L --> O[Validate Input<br/>Check numeric types]
M --> P[Read Asset File<br/>Base64 encode PNG]
N --> Q[Generate Prompt<br/>Format code review template]
O --> R[Perform Calculation<br/>a * b]
P --> S[Return Image Data<br/>MIME type + base64]
Q --> T[Return Prompt Array<br/>Structured messages]
R --> U[Log Result<br/>Structured logging]
S --> U
T --> U
U --> V[Return Success Response<br/>JSON format]
V --> W[Send to MCP Client<br/>Complete request cycle]
F --> W
I --> W
X[Configuration Loading<br/>settings.py] --> Y[Environment Variables<br/>.env file]
Y --> Z[Pydantic Validation<br/>Type checking & defaults]
Z --> AA[Server Startup<br/>main.py]
AA --> C
AA --> D
BB[Error Handling] --> CC[Structured Logging<br/>pylogger.py]
CC --> DD[JSON Output<br/>Timestamp + Context]
O --> BB
P --> BB
Q --> BB
classDef request fill:#e3f2fd
classDef routing fill:#f3e5f5
classDef tools fill:#e8f5e8
classDef config fill:#fff3e0
classDef logging fill:#fce4ec
class A,B,E,H,K request
class C,D,G,J routing
class L,M,N,O,P,Q,R,S,T tools
class X,Y,Z,AA config
class BB,CC,DD logging
template-mcp-server/
├── template_mcp_server/ # Main package directory
│ ├── __init__.py
│ ├── src/ # Core source code
│ │ ├── __init__.py
│ │ ├── main.py # Application entry point & startup logic
│ │ ├── api.py # FastAPI application & transport setup
│ │ ├── mcp.py # MCP server implementation & tool registration
│ │ ├── settings.py # Pydantic-based configuration management
│ │ └── tools/ # MCP tool implementations
│ │ ├── __init__.py
│ │ ├── multiply_tool.py # Mathematical operations tool
│ │ ├── code_review_prompt_tool.py # Code review prompt generator
│ │ ├── redhat_logo.py # Base64 image resource handler
│ │ └── assets/ # Static resource files
│ │ └── redhat.png # Example image asset
│ └── utils/ # Shared utilities
│ ├── __init__.py
│ └── pylogger.py # Structured logging with structlog
├── tests/ # Comprehensive test suite (81+ tests)
│ ├── __init__.py # Test package initialization
│ ├── conftest.py # Pytest fixtures and configuration
│ ├── test_multiply_tool.py # Unit tests for multiply tool (12 tests)
│ ├── test_redhat_logo.py # Unit tests for logo tool (10 tests)
│ ├── test_code_review_prompt.py # Unit tests for prompt tool (14 tests)
│ ├── test_settings.py # Unit tests for configuration (20 tests)
│ ├── test_mcp_server.py # Unit tests for MCP server (15 tests)
│ └── test_integration.py # Integration tests (10 tests)
├── pyproject.toml # Project metadata & dependencies
├── Containerfile # Red Hat UBI-based container build
├── compose.yaml # Docker Compose orchestration
├── .env.example # Environment configuration template
├── .gitignore # Version control exclusions
├── .pre-commit-config.yaml # Code quality automation
└── README.md # Project documentation
main.py: Application entry point with configuration validation, error handling, and uvicorn server startupapi.py: FastAPI application setup with transport protocol selection (HTTP/SSE/streamable-HTTP) and health endpointsmcp.py: Core MCP server class that registers tools using FastMCP decoratorssettings.py: Environment-based configuration using Pydantic BaseSettings with validationtools/: MCP tool implementations demonstrating arithmetic, prompts, and resource access patternsutils/pylogger.py: Structured JSON logging using structlog with comprehensive processors
multiply_numbers: Demonstrates basic arithmetic operations with error handlingread_redhat_logo_content: Shows resource access patterns with base64 encodingget_code_review_prompt: Illustrates prompt generation for code analysis
- Python 3.12 or higher
- uv (fast Python package installer and resolver)
-
Install uv (if not already installed):
# On macOS/Linux: curl -LsSf https://astral.sh/uv/install.sh | sh # On MacOS using brew brew install uv # On Windows: powershell -c "irm https://astral.sh/uv/install.ps1 | iex" # Or with pip: pip install uv
-
Clone the repository:
git clone https://github.com/redhat-data-and-ai/template-mcp-server cd template-mcp-server -
Create and activate a virtual environment with uv:
uv venv # Activate the virtual environment: # On macOS/Linux: source .venv/bin/activate # On Windows: .venv\Scripts\activate
-
Install the package and dependencies:
# Install in editable mode with all dependencies uv pip install -e .
-
Configure environment variables:
cp .env.example .env # Edit .env file with your configuration -
Run the server:
# Using the installed console script template-mcp-server # Or directly with Python module python -m template_mcp_server.src.main # Or using uv to run directly uv run python -m template_mcp_server.src.main
The server configuration is managed through environment variables:
| Variable | Default | Description |
|---|---|---|
MCP_HOST |
0.0.0.0 |
Server bind address |
MCP_PORT |
3000 |
Server port (1024-65535) |
MCP_TRANSPORT_PROTOCOL |
streamable-http |
Transport protocol (http, sse, streamable-http) |
MCP_SSL_KEYFILE |
None |
SSL private key file path |
MCP_SSL_CERTFILE |
None |
SSL certificate file path |
PYTHON_LOG_LEVEL |
INFO |
Logging level (DEBUG, INFO, WARNING, ERROR, CRITICAL) |
-
Build and run with Podman Compose:
podman-compose up --build
-
Or build manually:
podman build -t template-mcp-server . podman run -p 3000:3000 --env-file .env template-mcp-server
See the OpenShift Deployment Guide for complete instructions.
Quick start:
# Deploy to OpenShift namespace
make deploy openshift NAMESPACE=your-project-name
# Remove deployment
make undeploy openshiftDeploy to Red Hat Managed Platform with tenant configuration:
# Deploy to MPP with tenant
make deploy mpp TENANT=ask-data
# Remove MPP deployment
make undeploy mpp TENANT=ask-data-
Health check:
curl http://localhost:3000/health
-
Test MCP tools:
# Test multiply tool via MCP endpoint curl -X POST "http://localhost:3000/mcp" \ -H "Content-Type: application/json" \ -d '{"method": "tools/call", "params": {"name": "multiply_numbers", "arguments": {"a": 5, "b": 3}}}'
-
Install development dependencies:
uv pip install -e ".[dev]" -
Install pre-commit hooks:
pre-commit install
The project includes a comprehensive test suite with 81+ tests covering unit tests, integration tests, and various edge cases.
-
Run all tests:
pytest
-
Run tests with coverage reporting:
pytest --cov=template_mcp_server --cov-report=html --cov-report=term
-
Run tests by category:
# Unit tests only pytest -m unit # Integration tests only pytest -m integration # Slow running tests pytest -m slow # Tests requiring network access pytest -m network
-
Run specific test modules:
# Test individual components pytest tests/test_multiply_tool.py -v pytest tests/test_redhat_logo.py -v pytest tests/test_code_review_prompt.py -v pytest tests/test_settings.py -v pytest tests/test_mcp_server.py -v # Run integration tests pytest tests/test_integration.py -v
-
Run tests with different output formats:
# Verbose output with detailed test names pytest -v # Short traceback format pytest --tb=short # Quiet output (minimal) pytest -q
-
Linting and formatting with Ruff:
# Check for issues ruff check . # Auto-fix issues ruff check . --fix # Format code ruff format .
-
Type checking with MyPy:
mypy template_mcp_server/
-
Docstring validation:
pydocstyle template_mcp_server/ --convention=google
-
Run all pre-commit checks:
pre-commit run --all-files
The project includes a comprehensive test suite with the following structure:
| Test Category | Count | Description |
|---|---|---|
| Unit Tests | 71 | Individual component testing with mocking |
| Integration Tests | 10 | End-to-end workflow testing |
| Total Tests | 81+ | Complete test coverage |
Test Files:
test_multiply_tool.py- 12 tests covering arithmetic operations, edge cases, error handlingtest_redhat_logo.py- 10 tests covering async file operations, base64 encoding, error scenariostest_code_review_prompt.py- 14 tests covering prompt generation, multiple languages, formattingtest_settings.py- 20 tests covering configuration, environment variables, validationtest_mcp_server.py- 15 tests covering server initialization, tool registration, error handlingtest_integration.py- 10 tests covering complete workflows and system integration
Test Features:
- ✅ Comprehensive error handling validation
- ✅ Async function testing support
- ✅ Mock external dependencies
- ✅ Environment isolation with fixtures
- ✅ Performance testing for large data
- ✅ Concurrent usage simulation
- ✅ Configuration validation testing
-
Container testing:
docker-compose up -d curl -f http://localhost:3000/health docker-compose down
-
SSL testing (if configured):
curl -k https://localhost:3000/health
This project uses GitHub Actions for automated CI/CD workflows to ensure code quality, security, and reliability.
| Workflow | Trigger | Purpose |
|---|---|---|
| CI | Push to main, PRs | Run tests, linting, type checking, security scans |
| Dependency Updates | Weekly schedule | Automated dependency updates and security audits |
✅ Code Quality Assurance:
- Multi-Python version testing (3.12, 3.13)
- Comprehensive test suite execution (81+ tests)
- Code coverage reporting (80%+ requirement)
- Ruff linting and formatting validation
- MyPy type checking
- Docstring validation with pydocstyle
✅ Security & Compliance:
- Bandit security linting
- Safety dependency vulnerability scanning
✅ Automation & Maintenance:
- Dependabot configuration for automated dependency updates
- Pre-commit hook automation
- Weekly security audits
- Automated PR creation for dependency updates
Before pushing code, run the same checks that CI runs:
# Install development dependencies
uv pip install -e ".[dev]"
# Run all pre-commit checks
pre-commit run --all-files
# Run tests with coverage
pytest --cov=template_mcp_server --cov-fail-under=80
# Run security checks
bandit -r template_mcp_server/
safety check
# Build and test container
docker build -t template-mcp-server .
docker run --rm template-mcp-server python -c "import template_mcp_server; print('OK')"The main branch is protected with the following requirements:
- All CI checks must pass
- Pull request reviews required
- Up-to-date branches required
- No direct pushes to main
-
Fork and clone:
git fork <repository-url> git clone <your-fork-url> cd template-mcp-server
-
Create feature branch:
git checkout -b feature/your-feature-name
-
Set up development environment:
uv venv source .venv/bin/activate # On Windows: .venv\Scripts\activate uv pip install -e ".[dev]" pre-commit install
-
Make changes following our standards
-
Run comprehensive testing:
# Code quality ruff check . --fix ruff format . mypy template_mcp_server/ # Tests pytest --cov=template_mcp_server # Pre-commit validation pre-commit run --all-files
-
Commit and push:
git add . git commit -m "feat: descriptive commit message" git push origin feature/your-feature-name
-
Create Pull Request
- Python Style: Follow PEP 8 (enforced by Ruff)
- Type Annotations: Required for all public functions and methods
- Documentation: Google-style docstrings for all public APIs
- Testing: Write tests for new functionality with pytest
- Commits: Use conventional commit format (
feat:,fix:,docs:, etc.) - Error Handling: Use structured logging and proper exception handling
-
Create tool module:
# template_mcp_server/src/tools/your_tool.py async def your_tool_function(param: str) -> dict: """Your tool description. Args: param: Parameter description. Returns: dict: Result dictionary. """ # Implementation here return {"result": "success"}
-
Register in MCP server:
# In template_mcp_server/src/mcp.py from template_mcp_server.src.tools.your_tool import your_tool_function def _register_mcp_tools(self) -> None: self.mcp.tool()(your_tool_function) # Add this line
-
Add tests:
# tests/test_your_tool.py import pytest from template_mcp_server.src.tools.your_tool import your_tool_function @pytest.mark.asyncio async def test_your_tool(): result = await your_tool_function("test_param") assert result["result"] == "success"
-
Update documentation
- Place assets in:
template_mcp_server/src/tools/assets/ - Create resource handler in:
template_mcp_server/src/tools/ - Register in:
template_mcp_server/src/mcp.py - Add tests and documentation
- All changes require pull request review
- Automated checks must pass (tests, linting, type checking)
- Documentation should be updated for user-facing changes
- Breaking changes require discussion and versioning consideration
- Issues: Open GitHub issues for bugs or feature requests
- Discussions: Use GitHub Discussions for questions
- Documentation: Check existing docs and code examples
- Testing: Provide minimal reproduction cases for bugs