Skip to content
/ MetaGS Public

[NeurIPS 2025 Spotlight] Code for MetaGS: A Meta-Learned Gaussian-Phong Model for Out-of-Distribution 3D Scene Relighting

Notifications You must be signed in to change notification settings

raynehe/MetaGS

Repository files navigation

MetaGS: A Meta-Learned Gaussian-Phong Model for Out-of-Distribution 3D Scene Relighting

Yumeng He, Yunbo Wang, Xiaokang Yang

arXiv | PDF | Dataset

This repository contains the official code for our paper: MetaGS: A Meta-Learned Gaussian-Phong Model for Out-of-Distribution 3D Scene Relighting.

Installation

  1. Create an environment

    conda create -n metags python=3.10
    conda activate metags
  2. Install dependencies

    git clone https://github.com/raynehe/MetaGS.git
    cd MetaGS
    git submodule update --init --recursive
    pip install -r requirements.txt
    pip install -e submodules/depth-diff-gaussian-rasterization
    pip install -e submodules/simple-knn
    pip install ./bvh

Experiments

Training

  1. Stage 1&2: Gaussian initialization & Normal finetuning

    python train.py -s <path_to_your_dataset> -m <path_to_ouput_folder> --eval
  2. Stage 3: Meta-learning

    python train_meta.py -s <path_to_your_dataset> -m <path_to_ouput_folder> --eval

Evaluation

  1. Generate NVS renderings

    python render.py -m <path_to_ouput_folder>
  2. Calculate error metrics

     python metrics.py -m <path_to_ouput_folder>

Full script

You can run the full experiment using: (remember ro edit the $DATADIR and $OUTPUT location)

sh run.sh

Acknowledgements

We appreciate the following github repos where we borrow code from:

Thanks for their amazing works!

Citation

If you find our work helps, please cite our paper:

@article{he2024metags,
  title={MetaGS: A Meta-Learned Gaussian-Phong Model for Out-of-Distribution 3D Scene Relighting},
  author={He, Yumeng and Wang, Yunbo and Yang, Xiaokang},
  journal={arXiv preprint arXiv:2405.20791},
  year={2024}
}

About

[NeurIPS 2025 Spotlight] Code for MetaGS: A Meta-Learned Gaussian-Phong Model for Out-of-Distribution 3D Scene Relighting

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages