- Python 3
- CPU or NVIDIA GPU + CUDA
- Clone this repo:
git clone https://github.com/qinghew/SDGAN
cd SDGAN
pip install -r requirements.txt- Train a model:
python train.py --dataroot dataset_root --name SDGAN-
The training results and loss plots are saved to here:
./results/SDGAN. cd there, runtensorboard --logdir=./ --port=6006and click the URL http://localhost:6006. -
Test the model:
#!./scripts/test_cyclegan.sh
python test.py --dataroot dataset_root --name SDGAN --gpu_ids 0 --aspect_ratio 0- The test results will be saved to here:
./results/SDGAN/test_latest/.
- SDGAN:
- Omni-directional pixel-gradient convolution kernel:
- Results on photo→sketch:
- Results on sketch→photo:
- Results on APDrawing⇔photo:
- Results on wild data:
- Results on the constructed unpaired datasets:
If you use this code for your research, please cite our papers.
@article{wang2022SDGAN,
title={Self-Discriminative Cycle Generative Adversarial Networks for Face Image Translation},
author={Wang, Qinghe and Cao, Bing and Zhu, Pengfei and Wang, Nannan and Hu, Qinghua and Gao, Xinbo},
journal={SCIENTIA SINICA Informationis},
pages={DOI: 10.1360/SSI-2021-0321},
year={2022}
}






