Skip to content

Conversation

@colesbury
Copy link
Member

The only op currently supported is dense tensor + sparse tensor addition, which is all we need for autograd.

I've made tensor_type tensor public. The alternative is to add a getter, but getters always seemed verbose and lame in C++.

This comment was marked as off-topic.

This comment was marked as off-topic.

This comment was marked as off-topic.

@apaszke
Copy link
Contributor

apaszke commented Feb 1, 2017

I've merged my branch and we have a conflict now 😕

@colesbury colesbury merged commit 138f254 into pytorch:master Feb 1, 2017
@colesbury colesbury deleted the thpp_sparse branch February 1, 2017 22:44
}

template<>
bool THCTensor<real>::isSparse() const {

This comment was marked as off-topic.

This comment was marked as off-topic.

This comment was marked as off-topic.


template<>
long long THSTensor<real>::numel() const {
throw std::runtime_error("THSTensor::>::() not supported");

This comment was marked as off-topic.

This comment was marked as off-topic.

zou3519 pushed a commit to zou3519/pytorch that referenced this pull request Mar 30, 2018
bddppq pushed a commit to bddppq/pytorch that referenced this pull request Apr 17, 2018
…9c90c8

Previous import was a4dcc47791eb127652f5aaddd51d8896d446a067

Included changes:
- **[985af3f](onnx/onnx@985af3f)**: Update PythonAPIOverview.md (pytorch#738) <Dmytro Dzhulgakov>
- **[b69be33](onnx/onnx@b69be33)**: Add backend test for upsample (pytorch#729) <Sebastian Meßmer>
- **[0d9496e](onnx/onnx@0d9496e)**: Input test data of concat op should be float (pytorch#711) <Changming Sun>
- **[20bcb8b](onnx/onnx@20bcb8b)**: Fix the spec for batchnorm and instancenorm (pytorch#733) <Lu Fang>
- **[c9f825f](onnx/onnx@c9f825f)**: Refine a little bit about op spec. (pytorch#666) <Ke Zhang>
- **[a484eb2](onnx/onnx@a484eb2)**: Fix an error in Conv doc (pytorch#731) <Lu Fang>
- **[7410cc4](onnx/onnx@7410cc4)**: Fix incorrect package output paths (pytorch#730) <bddppq>
- **[be546e2](onnx/onnx@be546e2)**: Improve optimizer's API and docs (pytorch#713) <Lu Fang>
- **[c61506f](onnx/onnx@c61506f)**: Fix the shape inference python API (pytorch#716) <Lu Fang>
- **[e9d4134](onnx/onnx@e9d4134)**: Fix cmake on windows when not building python extension (pytorch#728) <bddppq>
- **[72187aa](onnx/onnx@72187aa)**: Add value_info support in make_graph (pytorch#726) <Lu Fang>
- **[67b7d89](onnx/onnx@67b7d89)**: Fix gen_proto in cmake (pytorch#719) <bddppq>
- **[fcb4ae3](onnx/onnx@fcb4ae3)**: docs rewording: Important Python Functions -> Python API Overview (pytorch#721) <anderspapitto>
- **[24275d6](onnx/onnx@24275d6)**: Ignore .eggs directory when doing lint (pytorch#722) <bddppq>
- **[54be8fa](onnx/onnx@54be8fa)**: Use cmake3 if it's available (pytorch#718) <bddppq>
- **[b8c4238](onnx/onnx@b8c4238)**: Add python function docs (pytorch#714) <Lu Fang>
- **[e177493](onnx/onnx@e177493)**: Remove unused cmake utils (pytorch#712) <bddppq>
- **[72d6ad6](onnx/onnx@72d6ad6)**: Remove pycmd from CMake (pytorch#710) <bddppq>
- **[93f0d40](onnx/onnx@93f0d40)**: Fix windows local build (pytorch#709) <Raymond Yang>
- **[6734224](onnx/onnx@6734224)**: CMake fixes and setup.py cleanup (pytorch#706) <bddppq>
- **[7f6a4fd](onnx/onnx@7f6a4fd)**: Add docs to explain important functions in ONNX Infra (pytorch#682) <Lu Fang>
- **[f0f6b3d](onnx/onnx@f0f6b3d)**: fix hardmax test cases make output dtype same as input (pytorch#705) <Wenhao Hu>
- **[c970f0c](onnx/onnx@c970f0c)**: Fix the Dummy backend (pytorch#701) <Lu Fang>
- **[2af45df](onnx/onnx@2af45df)**: setup.py uses cmake build system (pytorch#606) <anderspapitto>
- **[dfcaade](onnx/onnx@dfcaade)**: clean up unused variable left by removing consumed_input (pytorch#697) <bddppq>
- **[accfc74](onnx/onnx@accfc74)**: Remove incorrect backend test (pytorch#700) <Lu Fang>
- **[e558732](onnx/onnx@e558732)**: add max inclusive version to defs.get_schema function (pytorch#695) <Wenhao Hu>
- **[16f02eb](onnx/onnx@16f02eb)**: add API to add domain to min/max version for extension. (pytorch#694) <Ke Zhang>
- **[3e560dd](onnx/onnx@3e560dd)**: Fix doc for initializer (pytorch#690) <bddppq>
- **[6cc4f53](onnx/onnx@6cc4f53)**: Add model save function (pytorch#692) <Lu Fang>
- **[21eaf9b](onnx/onnx@21eaf9b)**: Changing the string discussing versions in operator specifications. (pytorch#691) <Niklas Gustafsson>
- **[3b0cdf4](onnx/onnx@3b0cdf4)**: Minor code quality improvements in optimizer/ (pytorch#612) <Sebastian Meßmer>
- **[641f126](onnx/onnx@641f126)**: Fix Gemm doc wording (pytorch#689) <bddppq>
- **[4a0ec75](onnx/onnx@4a0ec75)**: Clarifies installation error message when external protobuf dependencies are missing (pytorch#684) <Daniel J. H>
- **[960a2c3](onnx/onnx@960a2c3)**: Check outputs dtype in backend tests (pytorch#567) <bddppq>
- **[1d7dee4](onnx/onnx@1d7dee4)**: Fix Average pool test cases converted from PyTorch (pytorch#677) <Lu Fang>
- **[36d7fff](onnx/onnx@36d7fff)**: Fix Attribute default value pybind11 binding (pytorch#671) <bddppq>
- **[0536866](onnx/onnx@0536866)**: git ignore .pytest_cache (pytorch#674) <bddppq>
- **[afc84ac](onnx/onnx@afc84ac)**: Update README.md (pytorch#672) <Dmytro Dzhulgakov>
- **[9d2b530](onnx/onnx@9d2b530)**: Revert "[Typing 1/3] Setup mypy type checker (pytorch#607)" (pytorch#667) <bddppq>
- **[086727e](onnx/onnx@086727e)**: [Typing 1/3] Setup mypy type checker (pytorch#607) <Sebastian Meßmer>
- **[5716e20](onnx/onnx@5716e20)**: Convert all Node tests to Model tests (pytorch#651) <bddppq>
- **[6fe932a](onnx/onnx@6fe932a)**: Replace unittest.skip with custom exception (pytorch#659) <Dmytro Dzhulgakov>
- **[ecac1c1](onnx/onnx@ecac1c1)**: Merge Rel 1.1.0 branch into master (pytorch#657) <Anirudh>
- **[5cb999d](onnx/onnx@5cb999d)**: Minor cleanups to shape inference (pytorch#653) <anderspapitto>
- **[f4acf28](onnx/onnx@f4acf28)**: Remove allowconsumed enforceconsumed from op schema. (pytorch#617) <Ke Zhang>
- **[a8e4648](onnx/onnx@a8e4648)**: Adjust link flags when built in Windows Debug mode (pytorch#647) <Yinghai Lu>
- **[7c009fe](onnx/onnx@7c009fe)**: Fix lint error in optimizer test (pytorch#656) <bddppq>
- **[063d12f](onnx/onnx@063d12f)**: Fix optimizer split pass for models with constant output (pytorch#652) <bddppq>
jjsjann123 pushed a commit to jjsjann123/pytorch that referenced this pull request Apr 11, 2021
KyleCZH pushed a commit to KyleCZH/pytorch that referenced this pull request Sep 20, 2021
akashveramd pushed a commit to akashveramd/pytorch that referenced this pull request Apr 9, 2025
* wmma_op + unit test

* add arch limitation to wmma test

* change arch limitation

* Refactor + Add all type unit test(int4 compile failed)

* Add f32_16x16x16_bf16 unit test

* tempsave

* tempsave

* tempsave

* runtime bug, cannot find symbol

* workaround for incorrect HIP warpSize return value

* debugging

* tempsave

* Correctness OK, waiting for optimization

* Tidy up + format

* temp save

* temp save, reproduce the v_bfi_b32 issue

* add inline asm for wmmaop test

* tidy up

* clean some debug purpose code

* discard some codes

* clang format

* clang format

* compiler issue fixed + increase tile size

* navi3x_multipleD+example

* temp save

* workable

* batchedgemm[OK], groupconv[debug]

* groupconv: Sanity check[OK], Performance[Bad]

* navi3x_groupconv_need_optimization

* create necessary files

* save progress

* Add Inter-Row thread transfer

* save progress

* save debugging progress

* sanity check pass

* fix a host tensor bug and clean up flash-attn code

* format

* cancel unnecessary change

* cancel unnecessary change

* cancel unnecessary change

* temp save, add asm backend flag to amd_wmma

* Mat-A LDS Bypass sanity pass

* temp save

* gemm sanity fix

* Porting new blockwise gemm to flash attention

* Example branch provide to compiler team

* tempsave

* Fix a bug

* batched gemm ported

* conv A-skip lds ported

* Skip B-Lds real gemm

* Skip B Lds Gemm + MulD

* batched gemm, conv, skip b lds

* format

* Attn, skip b lds

* Change GridwiseOp nam

* fix a typo caused bug

* Skip A_Lds sanity pass, Skip B_Lds scratch occured

* Bug found, intra-row permute off caused

* bug found

* a fix

* disable buffer load due to incorrect 3rd dword

* update fmha config, no scratch generated

* update 3rd dword

* fmha config update

* FMHA, add support to gfx1101/gfx1102

* Merge origin dev (pytorch#2)

* [Navi3x] Fix Gridwise_multiple_d operation (pytorch#649)

* Add CMake Option "USE_OPT_NAVI3X"

* fix bug

* standardize docs (pytorch#655)

* Separate bibtex requirement from rocm-docs-core (pytorch#656)

* separate bibtex requirement from rocm-docs-core

* point requirements to source rocm-docs-core repo

* Add CMake Option "USE_OPT_NAVI3X" (pytorch#647)

* Add CMake Option "USE_OPT_NAVI3X"

* remove navi3x opt compile option from cmake script

* Conv + quantization + tanh  (pytorch#645)

* Rename file. Prepare to support another activation

* Add comment for quantization

* Extract out_elementop

* Add tanh example

* Add conv + bias + tanh quantization instance

* Add missing parameter

* Refine cmake

* Add external api and client example

* Extract variable in example

* Fix the comment

---------

Co-authored-by: zjing14 <[email protected]>

* Add a denorm test fix (pytorch#603)

* Add type_convert implementations for bf16

* Add the fix for conv_fwd

* Add the fix for conv_bwd_data

* Add the fix for conv_bwd_weight

* Format

* Format

* Another format

* Add a macro to use workaround on MI200 only

* Format

---------

Co-authored-by: Rosty Geyyer <[email protected]>
Co-authored-by: zjing14 <[email protected]>

* simplify karg in device/grid of split-k op (pytorch#644)

* simplify karg in device/grid split-k op

* fix mk_kn_mn instances

* add more instances

* use name from tensor layout

* fix 3rd dword of buffer source descriptor (pytorch#659)

* add fp64 instances (pytorch#658)

Co-authored-by: root <[email protected]>

* Issue pytorch#666: Revert "simplify karg in device/grid of split-k op (pytorch#644)" (pytorch#665)

This reverts commit bb5530a.

* Groupnorm + swish external api (pytorch#668)

* Rename to proper naming

* Add example of groupnorm + swish

* Extract duplicate code in example

* Add groupnorm + swish instances

* Ractor instance generation, split into multiple cpp file

* Add external api and client example

* Refine profiler message

* Use ck math version of exp

* Refine problem size in example

* Add host version of exp

* add a marco to turn on/off denorm fix (off by default) (pytorch#673)

* add a marco to turn off denorm fix by default

* expose the marco

---------

Co-authored-by: root <[email protected]>

* fixed quant example (pytorch#672)

Co-authored-by: root <[email protected]>

* Add dependabot config and pin rocm-docs-core (pytorch#663)

* [gtest] suppress unsafe buffer warn (pytorch#670)

ref: ROCm/MIOpen#1912

* Add memory index guard in wmma device ops (pytorch#667)

* Add more macros to turn on/off denorm fix (pytorch#678)

Co-authored-by: Rosty Geyyer <[email protected]>

* Fix a typo (pytorch#676)

* Add (pytorch#677)

* Allow using ROCm release candidate compilers. (pytorch#679)

* enable use of rocm5.5 release candidate 4

* upgrade to ROCM5.5 RC5

* try fix the PUB_KEY error, remove the cmake-data package

* upgrade to latest cmake version

* use private dockerhub repo for rocm5.5 rc5

* add missing bracket

* add vector load check

* solve conflicts

---------

Co-authored-by: Sam Wu <[email protected]>
Co-authored-by: Sam Wu <[email protected]>
Co-authored-by: rocking5566 <[email protected]>
Co-authored-by: zjing14 <[email protected]>
Co-authored-by: Rostyslav Geyyer <[email protected]>
Co-authored-by: Rosty Geyyer <[email protected]>
Co-authored-by: carlushuang <[email protected]>
Co-authored-by: root <[email protected]>
Co-authored-by: Jun Liu <[email protected]>
Co-authored-by: Illia Silin <[email protected]>

* Disable SkipLDS & Align AIT api (pytorch#3)

* fix layernorm, reduction Ops (pytorch#4)

* [Navi3x] Fix Gridwise_multiple_d operation (pytorch#649)

* Add CMake Option "USE_OPT_NAVI3X"

* fix bug

* standardize docs (pytorch#655)

* Separate bibtex requirement from rocm-docs-core (pytorch#656)

* separate bibtex requirement from rocm-docs-core

* point requirements to source rocm-docs-core repo

* Add CMake Option "USE_OPT_NAVI3X" (pytorch#647)

* Add CMake Option "USE_OPT_NAVI3X"

* remove navi3x opt compile option from cmake script

* Conv + quantization + tanh  (pytorch#645)

* Rename file. Prepare to support another activation

* Add comment for quantization

* Extract out_elementop

* Add tanh example

* Add conv + bias + tanh quantization instance

* Add missing parameter

* Refine cmake

* Add external api and client example

* Extract variable in example

* Fix the comment

---------

Co-authored-by: zjing14 <[email protected]>

* Add a denorm test fix (pytorch#603)

* Add type_convert implementations for bf16

* Add the fix for conv_fwd

* Add the fix for conv_bwd_data

* Add the fix for conv_bwd_weight

* Format

* Format

* Another format

* Add a macro to use workaround on MI200 only

* Format

---------

Co-authored-by: Rosty Geyyer <[email protected]>
Co-authored-by: zjing14 <[email protected]>

* simplify karg in device/grid of split-k op (pytorch#644)

* simplify karg in device/grid split-k op

* fix mk_kn_mn instances

* add more instances

* use name from tensor layout

* fix 3rd dword of buffer source descriptor (pytorch#659)

* add fp64 instances (pytorch#658)

Co-authored-by: root <[email protected]>

* Issue pytorch#666: Revert "simplify karg in device/grid of split-k op (pytorch#644)" (pytorch#665)

This reverts commit bb5530a.

* Groupnorm + swish external api (pytorch#668)

* Rename to proper naming

* Add example of groupnorm + swish

* Extract duplicate code in example

* Add groupnorm + swish instances

* Ractor instance generation, split into multiple cpp file

* Add external api and client example

* Refine profiler message

* Use ck math version of exp

* Refine problem size in example

* Add host version of exp

* add a marco to turn on/off denorm fix (off by default) (pytorch#673)

* add a marco to turn off denorm fix by default

* expose the marco

---------

Co-authored-by: root <[email protected]>

* fixed quant example (pytorch#672)

Co-authored-by: root <[email protected]>

* Add dependabot config and pin rocm-docs-core (pytorch#663)

* [gtest] suppress unsafe buffer warn (pytorch#670)

ref: ROCm/MIOpen#1912

* Add memory index guard in wmma device ops (pytorch#667)

* Add more macros to turn on/off denorm fix (pytorch#678)

Co-authored-by: Rosty Geyyer <[email protected]>

* Fix a typo (pytorch#676)

* Add (pytorch#677)

* Allow using ROCm release candidate compilers. (pytorch#679)

* enable use of rocm5.5 release candidate 4

* upgrade to ROCM5.5 RC5

* try fix the PUB_KEY error, remove the cmake-data package

* upgrade to latest cmake version

* use private dockerhub repo for rocm5.5 rc5

* add missing bracket

* Disable SkipLDS & Align AIT api

* Update dependabot config (pytorch#682)

Co-authored-by: samjwu <[email protected]>

* update attn api

* solve type_convert bug + enable

---------

Co-authored-by: Sam Wu <[email protected]>
Co-authored-by: Sam Wu <[email protected]>
Co-authored-by: rocking5566 <[email protected]>
Co-authored-by: zjing14 <[email protected]>
Co-authored-by: Rostyslav Geyyer <[email protected]>
Co-authored-by: Rosty Geyyer <[email protected]>
Co-authored-by: carlushuang <[email protected]>
Co-authored-by: root <[email protected]>
Co-authored-by: Jun Liu <[email protected]>
Co-authored-by: Illia Silin <[email protected]>
Co-authored-by: samjwu <[email protected]>
Co-authored-by: haocwang <[email protected]>

* fix typo

* Fix attention with causal mask

* multiple fix, try ait compile

* Add A/B not use LDS pipeline

* Clang format, Add gfx1101, gfx1102 support of FMHA example

* cancel change of format script

* 1. Enable 2-stage global Prefetch ( May cause VGPR spilling)
2. Enable FP16 accumulator blockwise_gemm

* clang-format

* 1. change blockwise gemm loopover direction from kmn to mnk ( ~1% improvement)
2. change kernel timing mode to 50 warmup + 50 timed repeat

* Update low level abstration of blockwise gemm wmma

* (2/5) bilinear gemm pass, perf bug: skip a lds has lower performance than skip b lds

* (3/5) batched gemm pass, perf bug: skip a lds has lower performance than skip b lds

* (4/5) grouped conv pass

* (5/5) attention pass, todo: debug lds perf bug

* AIT Attention API refactor (pytorch#8)

* sanity pass

* sanity pass 2

* confirm significant performance regression.

* turn on all instances

* turn off instance format

* Fix bug & tunning & format

* DML meta, self_attn+cross_attn

* sanity pass

* remove useless flag

* update tile and problem size used in AIT attention

* bug fix in grouped conv supporting check

* deprecate inline asm wmma

* Bug fix: double lds skip

* clang-format

* Fix errors in
1. example, fmha
2. gridwise pipeline
3. deviceop, fmha, change some containers from vector to array

* part2 of previous commit

* clang format

* API fix of gridwisegemmpipeline

* separate array base and vector base attention tensor transformation

* fix gemm

* clang format

* add gemm fp16 instances

* Temp save

* fpAintB kernel compile pass

* Sanity pass.

* Temp save

* debug code enabled

* Fp16AInt8B_GEMM sanity

* MQA implementation

* GQA-4 example

* tempsave

* Compile pass

* New implementation of fp16Aint8B Gemm, Acheieve similar math throughput with native fp16 Gemm

* format

* Todo: fix gemm_bilinear_wmma instances compilation bug

* Solve a bug when K1=16

* remove unnecessary changes

* Remove tensor layout limitation to LDS usage in tesnor contraction

* update self-attention and cross-attention

* fix a typo of name

* Add arch limiter for fp8 gemm

* enable fp8 gemm_xdl for all gfx9 targets

* temporarily disable gemm_xdl_fp16_fp8 on MI100/200

* fix the cmake logic for gemm_xdl_fp16_fp8

* re-enable the gemm_xdl_fp16_fp8 on MI100/200

---------

Co-authored-by: aska-0096 <[email protected]>
Co-authored-by: Sam Wu <[email protected]>
Co-authored-by: Sam Wu <[email protected]>
Co-authored-by: rocking5566 <[email protected]>
Co-authored-by: Rostyslav Geyyer <[email protected]>
Co-authored-by: Rosty Geyyer <[email protected]>
Co-authored-by: carlushuang <[email protected]>
Co-authored-by: root <[email protected]>
Co-authored-by: Jun Liu <[email protected]>
Co-authored-by: Illia Silin <[email protected]>
Co-authored-by: samjwu <[email protected]>
Co-authored-by: haocwang <[email protected]>
Co-authored-by: illsilin <[email protected]>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

3 participants