Skip to content

Conversation

@jianyuh
Copy link
Member

@jianyuh jianyuh commented Oct 29, 2019

Stack from ghstack:

When we print the DynamicLinear module, we don't want to print the scale and zero points as they are not needed for the dynamic quantization.

Let's take the output of RoBERTa model as an example:

Before this PR:

      (19): TransformerEncoderLayer(
        (dropout): Dropout(p=0.1, inplace=False)
        (attention): MultiheadAttention(
          (dropout): Dropout(p=0.1, inplace=False)
          (input_projection): DynamicQuantizedLinear(in_features=1024, out_features=3072, scale=1.0, zero_point=0)
          (output_projection): DynamicQuantizedLinear(in_features=1024, out_features=1024, scale=1.0, zero_point=0)
        )
        (residual_mlp): ResidualMLP(
          (mlp): Sequential(
            (0): DynamicQuantizedLinear(in_features=1024, out_features=4096, scale=1.0, zero_point=0)
            (1): GeLU()
            (2): Dropout(p=0.1, inplace=False)
            (3): DynamicQuantizedLinear(in_features=4096, out_features=1024, scale=1.0, zero_point=0)
            (4): Dropout(p=0.1, inplace=False)
          )
        )
        (attention_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
        (final_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
      )
      (20): TransformerEncoderLayer(
        (dropout): Dropout(p=0.1, inplace=False)
        (attention): MultiheadAttention(
          (dropout): Dropout(p=0.1, inplace=False)
          (input_projection): DynamicQuantizedLinear(in_features=1024, out_features=3072, scale=1.0, zero_point=0)
          (output_projection): DynamicQuantizedLinear(in_features=1024, out_features=1024, scale=1.0, zero_point=0)
        )
        (residual_mlp): ResidualMLP(
          (mlp): Sequential(
            (0): DynamicQuantizedLinear(in_features=1024, out_features=4096, scale=1.0, zero_point=0)
            (1): GeLU()
            (2): Dropout(p=0.1, inplace=False)
            (3): DynamicQuantizedLinear(in_features=4096, out_features=1024, scale=1.0, zero_point=0)
            (4): Dropout(p=0.1, inplace=False)
          )
        )
        (attention_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
        (final_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
      )

After this PR:

      (19): TransformerEncoderLayer(
        (dropout): Dropout(p=0.1, inplace=False)
        (attention): MultiheadAttention(
          (dropout): Dropout(p=0.1, inplace=False)
          (input_projection): DynamicQuantizedLinear(in_features=1024, out_features=3072)
          (output_projection): DynamicQuantizedLinear(in_features=1024, out_features=1024)
        )
        (residual_mlp): ResidualMLP(
          (mlp): Sequential(
            (0): DynamicQuantizedLinear(in_features=1024, out_features=4096)
            (1): GeLU()
            (2): Dropout(p=0.1, inplace=False)
            (3): DynamicQuantizedLinear(in_features=4096, out_features=1024)
            (4): Dropout(p=0.1, inplace=False)
          )
        )
        (attention_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
        (final_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
      )
      (20): TransformerEncoderLayer(
        (dropout): Dropout(p=0.1, inplace=False)
        (attention): MultiheadAttention(
          (dropout): Dropout(p=0.1, inplace=False)
          (input_projection): DynamicQuantizedLinear(in_features=1024, out_features=3072)
          (output_projection): DynamicQuantizedLinear(in_features=1024, out_features=1024)
        )
        (residual_mlp): ResidualMLP(
          (mlp): Sequential(
            (0): DynamicQuantizedLinear(in_features=1024, out_features=4096)
            (1): GeLU()
            (2): Dropout(p=0.1, inplace=False)
            (3): DynamicQuantizedLinear(in_features=4096, out_features=1024)
            (4): Dropout(p=0.1, inplace=False)
          )
        )
        (attention_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
        (final_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
      )

Differential Revision: D18197022

When we print the `DynamicLinear` module, we don't want to print the scale and zero points as they are not needed for the dynamic quantization.

Let's take the output of RoBERTa model as an example:

Before this PR:
```
      (19): TransformerEncoderLayer(
        (dropout): Dropout(p=0.1, inplace=False)
        (attention): MultiheadAttention(
          (dropout): Dropout(p=0.1, inplace=False)
          (input_projection): DynamicQuantizedLinear(in_features=1024, out_features=3072, scale=1.0, zero_point=0)
          (output_projection): DynamicQuantizedLinear(in_features=1024, out_features=1024, scale=1.0, zero_point=0)
        )
        (residual_mlp): ResidualMLP(
          (mlp): Sequential(
            (0): DynamicQuantizedLinear(in_features=1024, out_features=4096, scale=1.0, zero_point=0)
            (1): GeLU()
            (2): Dropout(p=0.1, inplace=False)
            (3): DynamicQuantizedLinear(in_features=4096, out_features=1024, scale=1.0, zero_point=0)
            (4): Dropout(p=0.1, inplace=False)
          )
        )
        (attention_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
        (final_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
      )
      (20): TransformerEncoderLayer(
        (dropout): Dropout(p=0.1, inplace=False)
        (attention): MultiheadAttention(
          (dropout): Dropout(p=0.1, inplace=False)
          (input_projection): DynamicQuantizedLinear(in_features=1024, out_features=3072, scale=1.0, zero_point=0)
          (output_projection): DynamicQuantizedLinear(in_features=1024, out_features=1024, scale=1.0, zero_point=0)
        )
        (residual_mlp): ResidualMLP(
          (mlp): Sequential(
            (0): DynamicQuantizedLinear(in_features=1024, out_features=4096, scale=1.0, zero_point=0)
            (1): GeLU()
            (2): Dropout(p=0.1, inplace=False)
            (3): DynamicQuantizedLinear(in_features=4096, out_features=1024, scale=1.0, zero_point=0)
            (4): Dropout(p=0.1, inplace=False)
          )
        )
        (attention_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
        (final_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
      )
```

After this PR:
```
      (19): TransformerEncoderLayer(
        (dropout): Dropout(p=0.1, inplace=False)
        (attention): MultiheadAttention(
          (dropout): Dropout(p=0.1, inplace=False)
          (input_projection): DynamicQuantizedLinear(in_features=1024, out_features=3072)
          (output_projection): DynamicQuantizedLinear(in_features=1024, out_features=1024)
        )
        (residual_mlp): ResidualMLP(
          (mlp): Sequential(
            (0): DynamicQuantizedLinear(in_features=1024, out_features=4096)
            (1): GeLU()
            (2): Dropout(p=0.1, inplace=False)
            (3): DynamicQuantizedLinear(in_features=4096, out_features=1024)
            (4): Dropout(p=0.1, inplace=False)
          )
        )
        (attention_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
        (final_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
      )
      (20): TransformerEncoderLayer(
        (dropout): Dropout(p=0.1, inplace=False)
        (attention): MultiheadAttention(
          (dropout): Dropout(p=0.1, inplace=False)
          (input_projection): DynamicQuantizedLinear(in_features=1024, out_features=3072)
          (output_projection): DynamicQuantizedLinear(in_features=1024, out_features=1024)
        )
        (residual_mlp): ResidualMLP(
          (mlp): Sequential(
            (0): DynamicQuantizedLinear(in_features=1024, out_features=4096)
            (1): GeLU()
            (2): Dropout(p=0.1, inplace=False)
            (3): DynamicQuantizedLinear(in_features=4096, out_features=1024)
            (4): Dropout(p=0.1, inplace=False)
          )
        )
        (attention_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
        (final_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
      )
```

Differential Revision: [D18197022](https://our.internmc.facebook.com/intern/diff/D18197022/)

[ghstack-poisoned]
@jianyuh jianyuh requested a review from apaszke as a code owner October 29, 2019 05:13
jianyuh added a commit that referenced this pull request Oct 29, 2019
When we print the `DynamicLinear` module, we don't want to print the scale and zero points as they are not needed for the dynamic quantization.

Let's take the output of RoBERTa model as an example:

Before this PR:
```
      (19): TransformerEncoderLayer(
        (dropout): Dropout(p=0.1, inplace=False)
        (attention): MultiheadAttention(
          (dropout): Dropout(p=0.1, inplace=False)
          (input_projection): DynamicQuantizedLinear(in_features=1024, out_features=3072, scale=1.0, zero_point=0)
          (output_projection): DynamicQuantizedLinear(in_features=1024, out_features=1024, scale=1.0, zero_point=0)
        )
        (residual_mlp): ResidualMLP(
          (mlp): Sequential(
            (0): DynamicQuantizedLinear(in_features=1024, out_features=4096, scale=1.0, zero_point=0)
            (1): GeLU()
            (2): Dropout(p=0.1, inplace=False)
            (3): DynamicQuantizedLinear(in_features=4096, out_features=1024, scale=1.0, zero_point=0)
            (4): Dropout(p=0.1, inplace=False)
          )
        )
        (attention_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
        (final_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
      )
      (20): TransformerEncoderLayer(
        (dropout): Dropout(p=0.1, inplace=False)
        (attention): MultiheadAttention(
          (dropout): Dropout(p=0.1, inplace=False)
          (input_projection): DynamicQuantizedLinear(in_features=1024, out_features=3072, scale=1.0, zero_point=0)
          (output_projection): DynamicQuantizedLinear(in_features=1024, out_features=1024, scale=1.0, zero_point=0)
        )
        (residual_mlp): ResidualMLP(
          (mlp): Sequential(
            (0): DynamicQuantizedLinear(in_features=1024, out_features=4096, scale=1.0, zero_point=0)
            (1): GeLU()
            (2): Dropout(p=0.1, inplace=False)
            (3): DynamicQuantizedLinear(in_features=4096, out_features=1024, scale=1.0, zero_point=0)
            (4): Dropout(p=0.1, inplace=False)
          )
        )
        (attention_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
        (final_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
      )
```

After this PR:
```
      (19): TransformerEncoderLayer(
        (dropout): Dropout(p=0.1, inplace=False)
        (attention): MultiheadAttention(
          (dropout): Dropout(p=0.1, inplace=False)
          (input_projection): DynamicQuantizedLinear(in_features=1024, out_features=3072)
          (output_projection): DynamicQuantizedLinear(in_features=1024, out_features=1024)
        )
        (residual_mlp): ResidualMLP(
          (mlp): Sequential(
            (0): DynamicQuantizedLinear(in_features=1024, out_features=4096)
            (1): GeLU()
            (2): Dropout(p=0.1, inplace=False)
            (3): DynamicQuantizedLinear(in_features=4096, out_features=1024)
            (4): Dropout(p=0.1, inplace=False)
          )
        )
        (attention_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
        (final_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
      )
      (20): TransformerEncoderLayer(
        (dropout): Dropout(p=0.1, inplace=False)
        (attention): MultiheadAttention(
          (dropout): Dropout(p=0.1, inplace=False)
          (input_projection): DynamicQuantizedLinear(in_features=1024, out_features=3072)
          (output_projection): DynamicQuantizedLinear(in_features=1024, out_features=1024)
        )
        (residual_mlp): ResidualMLP(
          (mlp): Sequential(
            (0): DynamicQuantizedLinear(in_features=1024, out_features=4096)
            (1): GeLU()
            (2): Dropout(p=0.1, inplace=False)
            (3): DynamicQuantizedLinear(in_features=4096, out_features=1024)
            (4): Dropout(p=0.1, inplace=False)
          )
        )
        (attention_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
        (final_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
      )
```

Differential Revision: [D18197022](https://our.internmc.facebook.com/intern/diff/D18197022/)

ghstack-source-id: 92807317
Pull Request resolved: #28827
Copy link
Collaborator

@jamesr66a jamesr66a left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thanks!

@facebook-github-bot
Copy link
Contributor

This pull request has been merged in ef5a6b2.

@facebook-github-bot facebook-github-bot deleted the gh/jianyuh/42/head branch November 2, 2019 14:17
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

Projects

None yet

Development

Successfully merging this pull request may close these issues.

5 participants