Skip to content

Conversation

@zasdfgbnm
Copy link
Collaborator

@zasdfgbnm zasdfgbnm commented Mar 30, 2019

Stack from ghstack:

unique is fragile, previously I tried to change it in #18391 and #17097, they all pass OSS tests but finally get reverted due to internal failure. My previous work of refactoring unique #18459 is based on #18391, and after #18391 get reverted, I could not work on #18459. To continue working on #18459, #18391, and #17097 without worrying about internal failures, I am suggesting the following steps for the improvements of unique and unique_dim. @soumith Please take this and there is no need to put #18391 back.

The motivation is basically to move forward as much as possible without causing any internal failures. So I will try to divide it into steps and sort from low probability of internal failure to high probability. (I don't know what the internal failure is, so I have to guess). Let's merge these PR stack one by one until we enounter internal failure.

Step 1: Create two new ATen operators, _unique2_temporary_will_remove_soon and _unique_dim2_temporary_will_remove_soon and keep _unique and _unique_dim unchanged. The backend of these two functions and _unique and _unique_dim are all the same, the only difference is the temporary ones support return_counts but not the _unique and _unique_dim. Step one is mostly #18391 + #18459. The cuda8 errors has been fixed. At this point, there is no user visible API change, so no docs are updated. torch.unique does not support return_counts yet, and return_counts is tested through the newly added temporary operators. This step just added two new ATen operators, so there shouldn't be any internal failure.

Step 2: Rename _unique_dim2_temporary_will_remove_soon to unique_dim. This should cause no internal failure either, because no change to existing operators. The only thing to worry about is to delete unique_dim from python side because we don't want users to use it. At this point, C++ users now have return_counts support for unique_dim.

Step 3: Update the docs of torch.unique and use unique_dim inside torch.unique to support return_counts In the docs, we should say torch.unique with None dim support does not support return_counts yet. This might cause internal failure.

Step 4: Rename _unique2_temporary_will_remove_soon to _unique2 and use _unique2 inside torch.unique to support return_counts. Update the docs saying that torch.unique with None dim now support return_counts. This might cause internal failure.

Step 5: Remove _unique_dim. This might cause internal failure.

Step 6: Rename _unique2 to unique, add optional dim argument to make it looks like the signature of Python's torch.unique. Inside torch.unique, use unique and get rid of unique_dim. Unbind unique_dim totally from Python at codegen. This is likely to cause internal fail.

Step 7: Remove _unique. This is very likely to cause internal failure.

This PR

This PR is for step 1. This create two new ATen operators, _unique2_temporary_will_remove_soon and _unique_dim2_temporary_will_remove_soon and implement return_counts inside them and do refactor for performance improvements.

Please review @ngimel @VitalyFedyunin. They are mostly copied from #18391 and #18459, so the review should be easy.

Below is a benchmark on a tensor of shape torch.Size([15320, 2]):

Before

print(torch.__version__)
%timeit a.unique(dim=0, sorted=True, return_inverse=False); torch.cuda.synchronize()
%timeit a.unique(dim=0, sorted=True, return_inverse=True); torch.cuda.synchronize()
1.0.1
192 µs ± 1.61 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
548 ms ± 3.39 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
print(torch.__version__)
%timeit a.unique(sorted=True, return_inverse=False); torch.cuda.synchronize()
%timeit a.unique(sorted=True, return_inverse=True); torch.cuda.synchronize()
1.0.1
226 µs ± 929 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each)
302 µs ± 7.06 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

After

print(torch.__version__)
%timeit a.unique(dim=0, sorted=True, return_inverse=False); torch.cuda.synchronize()
%timeit a.unique(dim=0, sorted=True, return_inverse=True); torch.cuda.synchronize()
%timeit torch._unique_dim2_temporary_will_remove_soon(a, dim=0, sorted=True, return_inverse=False, return_counts=True); torch.cuda.synchronize()
%timeit torch._unique_dim2_temporary_will_remove_soon(a, dim=0, sorted=True, return_inverse=True, return_counts=True); torch.cuda.synchronize()
1.1.0a0+83ab8ac
190 µs ± 2.14 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
237 µs ± 1.23 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
219 µs ± 2.3 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
263 µs ± 1.15 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
print(torch.__version__)
%timeit a.unique(sorted=True, return_inverse=False); torch.cuda.synchronize()
%timeit a.unique(sorted=True, return_inverse=True); torch.cuda.synchronize()
%timeit torch._unique2_temporary_will_remove_soon(a, sorted=True, return_inverse=False, return_counts=True); torch.cuda.synchronize()
%timeit torch._unique2_temporary_will_remove_soon(a, sorted=True, return_inverse=True, return_counts=True); torch.cuda.synchronize()
1.1.0a0+83ab8ac
232 µs ± 2.21 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
301 µs ± 1.65 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
264 µs ± 7.67 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
339 µs ± 9.2 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

Differential Revision: D14730905

… for performance

`unique` is fragile, previously I tried to change it in #18391 and #17097, they all pass OSS tests but finally get reverted due to internal failure. My previous work of refactoring unique #18459 is based on #18391, and after #18391 get reverted, I could not work on #18459. To continue working on #18459, #18391, and #17097 without worrying about internal failures, I am suggesting the following steps for the improvements of `unique` and `unique_dim`. @soumith Please take this and there is no need to put #18391 back.

The motivation is basically to move forward as much as possible without causing any internal failures. So I will try to divide it into steps and sort from low probability of internal failure to high probability. (I don't know what the internal failure is, so I have to guess). Let's merge these PR stack one by one until we enounter internal failure.

Step 1: Create two new ATen operators, `_unique2_temporary_will_remove_soon` and `_unique_dim2_temporary_will_remove_soon` and keep `_unique` and `_unique_dim` unchanged. The backend of these two functions and `_unique` and `_unique_dim` are all the same, the only difference is the temporary ones support `return_counts` but not the `_unique` and `_unique_dim`. Step one is mostly #18391 + #18459. The cuda8 errors has been fixed. At this point, there is no user visible API change, so no docs are updated. `torch.unique` does not support `return_counts` yet, and `return_counts` is tested through the newly added temporary operators. This step just added two new ATen operators, so there shouldn't be any internal failure.

Step 2: Rename `_unique_dim2_temporary_will_remove_soon` to `unique_dim`. This should cause no internal failure either, because no change to existing operators. The only thing to worry about is to delete `unique_dim` from python side because we don't want users to use it. At this point, C++ users now have `return_counts` support for `unique_dim`.

Step 3: Update the docs of `torch.unique` and use `unique_dim` inside `torch.unique` to support `return_counts` In the docs, we should say `torch.unique` with None dim support does not support `return_counts` yet. This might cause internal failure.

Step 4: Rename `_unique2_temporary_will_remove_soon` to `_unique2` and use `_unique2` inside `torch.unique` to support `return_counts`. Update the docs saying that `torch.unique` with None dim now support `return_counts`. This might cause internal failure.

Step 5: Remove `_unique_dim`. This might cause internal failure.

Step 6: Rename `_unique2` to `unique`, add optional `dim` argument to make it looks like the signature of Python's `torch.unique`. Inside `torch.unique`, use `unique` and get rid of `unique_dim`. Unbind `unique_dim` totally from Python at codegen. This is likely to cause internal fail.

Step 7: Remove `_unique`. This is very likely to cause internal failure.

This PR is for step 1. This create two new ATen operators, `_unique2_temporary_will_remove_soon` and `_unique_dim2_temporary_will_remove_soon` and implement `return_counts` inside them and do refactor for performance improvements.

Please review @ngimel @VitalyFedyunin. They are mostly copied from #18391 and #18459, so the review should be easy.

Below is a benchmark on a tensor of shape `torch.Size([15320, 2])`:

```python
print(torch.__version__)
%timeit a.unique(dim=0, sorted=True, return_inverse=False); torch.cuda.synchronize()
%timeit a.unique(dim=0, sorted=True, return_inverse=True); torch.cuda.synchronize()
```

```
1.0.1
192 µs ± 1.61 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
548 ms ± 3.39 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
```

```python
print(torch.__version__)
%timeit a.unique(sorted=True, return_inverse=False); torch.cuda.synchronize()
%timeit a.unique(sorted=True, return_inverse=True); torch.cuda.synchronize()
```

```
1.0.1
226 µs ± 929 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each)
302 µs ± 7.06 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
```

```python
print(torch.__version__)
%timeit a.unique(dim=0, sorted=True, return_inverse=False); torch.cuda.synchronize()
%timeit a.unique(dim=0, sorted=True, return_inverse=True); torch.cuda.synchronize()
%timeit torch._unique_dim2_temporary_will_remove_soon(a, dim=0, sorted=True, return_inverse=False, return_counts=True); torch.cuda.synchronize()
%timeit torch._unique_dim2_temporary_will_remove_soon(a, dim=0, sorted=True, return_inverse=True, return_counts=True); torch.cuda.synchronize()
```

```
1.1.0a0+83ab8ac
190 µs ± 2.14 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
237 µs ± 1.23 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
219 µs ± 2.3 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
263 µs ± 1.15 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
```

```python
print(torch.__version__)
%timeit a.unique(sorted=True, return_inverse=False); torch.cuda.synchronize()
%timeit a.unique(sorted=True, return_inverse=True); torch.cuda.synchronize()
%timeit torch._unique2_temporary_will_remove_soon(a, sorted=True, return_inverse=False, return_counts=True); torch.cuda.synchronize()
%timeit torch._unique2_temporary_will_remove_soon(a, sorted=True, return_inverse=True, return_counts=True); torch.cuda.synchronize()
```

```
1.1.0a0+83ab8ac
232 µs ± 2.21 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
301 µs ± 1.65 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
264 µs ± 7.67 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
339 µs ± 9.2 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
```
inverse_indices[indices[i]] = imask[i];
return true;
},
[=] __device__ (int64_t a, int64_t b) -> int64_t {
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Nit: there's no real reason for this to return int64_t rather than bool, right? thrust::not_equal_to that is used in the non-dim case returns bool.

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@ngimel Yes, you are right. C++ would automatically convert true to 1. But does changing int64_t to bool here improve anything? If not, I will leave it as int64_t.

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

You are right, it won't improve anything, it will just be similar to equal used a few lines above, and thrust functors used in the non-dim case. Feel free to leave as is.

thrust::adjacent_difference(policy, data, data + num_inp, inv_loc_ptr, not_equal);
inv_loc[0] = 0;
thrust::inclusive_scan(policy, inv_loc_ptr, inv_loc_ptr + num_inp, inv_loc_ptr);
thrust::scatter(policy, inv_loc_ptr, inv_loc_ptr + num_inp, sorted_indices_ptr, inverse_indices_ptr);
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I'd sleep better if there was an assert for sorted_indices_ptr being non-null here - it currently works the way your code is structured, but if compute_unique is called in a different way it could break. Better yet, send sorted_indices tensor here, and check if it is .defined()

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

fixed

@zasdfgbnm
Copy link
Collaborator Author

@VitalyFedyunin I assigned you to this PR because you self-assigned yourself for the previous ones. Feel free to unassign if you are no longer interested :).

… unique_dim for performance"

Step 1: Secretly add return_counts to unique, and refactor unique_dim for performance

`unique` is fragile, previously I tried to change it in #18391 and #17097, they all pass OSS tests but finally get reverted due to internal failure. My previous work of refactoring unique #18459 is based on #18391, and after #18391 get reverted, I could not work on #18459. To continue working on #18459, #18391, and #17097 without worrying about internal failures, I am suggesting the following steps for the improvements of `unique` and `unique_dim`. @soumith Please take this and there is no need to put #18391 back.

The motivation is basically to move forward as much as possible without causing any internal failures. So I will try to divide it into steps and sort from low probability of internal failure to high probability. (I don't know what the internal failure is, so I have to guess). Let's merge these PR stack one by one until we enounter internal failure.

Step 1: Create two new ATen operators, `_unique2_temporary_will_remove_soon` and `_unique_dim2_temporary_will_remove_soon` and keep `_unique` and `_unique_dim` unchanged. The backend of these two functions and `_unique` and `_unique_dim` are all the same, the only difference is the temporary ones support `return_counts` but not the `_unique` and `_unique_dim`. Step one is mostly #18391 + #18459. The cuda8 errors has been fixed. At this point, there is no user visible API change, so no docs are updated. `torch.unique` does not support `return_counts` yet, and `return_counts` is tested through the newly added temporary operators. This step just added two new ATen operators, so there shouldn't be any internal failure.

Step 2: Rename `_unique_dim2_temporary_will_remove_soon` to `unique_dim`. This should cause no internal failure either, because no change to existing operators. The only thing to worry about is to delete `unique_dim` from python side because we don't want users to use it. At this point, C++ users now have `return_counts` support for `unique_dim`.

Step 3: Update the docs of `torch.unique` and use `unique_dim` inside `torch.unique` to support `return_counts` In the docs, we should say `torch.unique` with None dim support does not support `return_counts` yet. This might cause internal failure.

Step 4: Rename `_unique2_temporary_will_remove_soon` to `_unique2` and use `_unique2` inside `torch.unique` to support `return_counts`. Update the docs saying that `torch.unique` with None dim now support `return_counts`. This might cause internal failure.

Step 5: Remove `_unique_dim`. This might cause internal failure.

Step 6: Rename `_unique2` to `unique`, add optional `dim` argument to make it looks like the signature of Python's `torch.unique`. Inside `torch.unique`, use `unique` and get rid of `unique_dim`. Unbind `unique_dim` totally from Python at codegen. This is likely to cause internal fail.

Step 7: Remove `_unique`. This is very likely to cause internal failure.

This PR is for step 1. This create two new ATen operators, `_unique2_temporary_will_remove_soon` and `_unique_dim2_temporary_will_remove_soon` and implement `return_counts` inside them and do refactor for performance improvements.

Please review @ngimel @VitalyFedyunin. They are mostly copied from #18391 and #18459, so the review should be easy.

Below is a benchmark on a tensor of shape `torch.Size([15320, 2])`:

```python
print(torch.__version__)
%timeit a.unique(dim=0, sorted=True, return_inverse=False); torch.cuda.synchronize()
%timeit a.unique(dim=0, sorted=True, return_inverse=True); torch.cuda.synchronize()
```

```
1.0.1
192 µs ± 1.61 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
548 ms ± 3.39 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
```

```python
print(torch.__version__)
%timeit a.unique(sorted=True, return_inverse=False); torch.cuda.synchronize()
%timeit a.unique(sorted=True, return_inverse=True); torch.cuda.synchronize()
```

```
1.0.1
226 µs ± 929 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each)
302 µs ± 7.06 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
```

```python
print(torch.__version__)
%timeit a.unique(dim=0, sorted=True, return_inverse=False); torch.cuda.synchronize()
%timeit a.unique(dim=0, sorted=True, return_inverse=True); torch.cuda.synchronize()
%timeit torch._unique_dim2_temporary_will_remove_soon(a, dim=0, sorted=True, return_inverse=False, return_counts=True); torch.cuda.synchronize()
%timeit torch._unique_dim2_temporary_will_remove_soon(a, dim=0, sorted=True, return_inverse=True, return_counts=True); torch.cuda.synchronize()
```

```
1.1.0a0+83ab8ac
190 µs ± 2.14 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
237 µs ± 1.23 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
219 µs ± 2.3 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
263 µs ± 1.15 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
```

```python
print(torch.__version__)
%timeit a.unique(sorted=True, return_inverse=False); torch.cuda.synchronize()
%timeit a.unique(sorted=True, return_inverse=True); torch.cuda.synchronize()
%timeit torch._unique2_temporary_will_remove_soon(a, sorted=True, return_inverse=False, return_counts=True); torch.cuda.synchronize()
%timeit torch._unique2_temporary_will_remove_soon(a, sorted=True, return_inverse=True, return_counts=True); torch.cuda.synchronize()
```

```
1.1.0a0+83ab8ac
232 µs ± 2.21 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
301 µs ± 1.65 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
264 µs ± 7.67 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
339 µs ± 9.2 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
```

gh-metadata: pytorch pytorch 18648 gh/zasdfgbnm/1/head
@ezyang
Copy link
Contributor

ezyang commented Apr 1, 2019

@VitalyFedyunin said he will look at this tomorrow. Shout if you want me to look too.

@VitalyFedyunin
Copy link
Contributor

Will take some time to run internal tests, will merge right after

@VitalyFedyunin
Copy link
Contributor

@pytorch retest this please

zdevito pushed a commit to zdevito/ATen that referenced this pull request Apr 3, 2019
… for performance (#18648)

Summary:
Pull Request resolved: pytorch/pytorch#18648
ghimport-source-id: 1cf4a8fe91492621e02217f38cae5d7e0699fb05

Stack from [ghstack](https://github.com/ezyang/ghstack):
* #18661 Step 7: remove _unique
* #18655 Step 6: Rename _unique2 to unique and add int? dim
* #18654 Step 5: remove _unque_dim in favor of unique_dim
* #18651 Step 4: add support for unique with dim=None
* #18650 Step 3: Add support for return_counts to torch.unique for dim not None
* #18649 Step 2: Rename _unique_dim2_temporary_will_remove_soon to unique_dim
* **#18648 Step 1: Secretly add return_counts to unique, and refactor unique_dim for performance**

`unique` is fragile, previously I tried to change it in #18391 and #17097, they all pass OSS tests but finally get reverted due to internal failure. My previous work of refactoring unique #18459 is based on #18391, and after #18391 get reverted, I could not work on #18459. To continue working on #18459, #18391, and #17097 without worrying about internal failures, I am suggesting the following steps for the improvements of `unique` and `unique_dim`. soumith Please take this and there is no need to put #18391 back.

The motivation is basically to move forward as much as possible without causing any internal failures. So I will try to divide it into steps and sort from low probability of internal failure to high probability. (I don't know what the internal failure is, so I have to guess). Let's merge these PR stack one by one until we enounter internal failure.

Step 1: Create two new ATen operators, `_unique2_temporary_will_remove_soon` and `_unique_dim2_temporary_will_remove_soon` and keep `_unique` and `_unique_dim` unchanged. The backend of these two functions and `_unique` and `_unique_dim` are all the same, the only difference is the temporary ones support `return_counts` but not the `_unique` and `_unique_dim`. Step one is mostly #18391 + #18459. The cuda8 errors has been fixed. At this point, there is no user visible API change, so no docs are updated. `torch.unique` does not support `return_counts` yet, and `return_counts` is tested through the newly added temporary operators. This step just added two new ATen operators, so there shouldn't be any internal failure.

Step 2: Rename `_unique_dim2_temporary_will_remove_soon` to `unique_dim`. This should cause no internal failure either, because no change to existing operators. The only thing to worry about is to delete `unique_dim` from python side because we don't want users to use it. At this point, C++ users now have `return_counts` support for `unique_dim`.

Step 3: Update the docs of `torch.unique` and use `unique_dim` inside `torch.unique` to support `return_counts` In the docs, we should say `torch.unique` with None dim support does not support `return_counts` yet. This might cause internal failure.

Step 4: Rename `_unique2_temporary_will_remove_soon` to `_unique2` and use `_unique2` inside `torch.unique` to support `return_counts`. Update the docs saying that `torch.unique` with None dim now support `return_counts`. This might cause internal failure.

Step 5: Remove `_unique_dim`. This might cause internal failure.

Step 6: Rename `_unique2` to `unique`, add optional `dim` argument to make it looks like the signature of Python's `torch.unique`. Inside `torch.unique`, use `unique` and get rid of `unique_dim`. Unbind `unique_dim` totally from Python at codegen. This is likely to cause internal fail.

Step 7: Remove `_unique`. This is very likely to cause internal failure.

This PR
======

This PR is for step 1. This create two new ATen operators, `_unique2_temporary_will_remove_soon` and `_unique_dim2_temporary_will_remove_soon` and implement `return_counts` inside them and do refactor for performance improvements.

Please review ngimel VitalyFedyunin. They are mostly copied from #18391 and #18459, so the review should be easy.

Below is a benchmark on a tensor of shape `torch.Size([15320, 2])`:

Before
---------

```python
print(torch.__version__)
%timeit a.unique(dim=0, sorted=True, return_inverse=False); torch.cuda.synchronize()
%timeit a.unique(dim=0, sorted=True, return_inverse=True); torch.cuda.synchronize()
```

```
1.0.1
192 µs ± 1.61 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
548 ms ± 3.39 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
```

```python
print(torch.__version__)
%timeit a.unique(sorted=True, return_inverse=False); torch.cuda.synchronize()
%timeit a.unique(sorted=True, return_inverse=True); torch.cuda.synchronize()
```

```
1.0.1
226 µs ± 929 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each)
302 µs ± 7.06 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
```

After
-------

```python
print(torch.__version__)
%timeit a.unique(dim=0, sorted=True, return_inverse=False); torch.cuda.synchronize()
%timeit a.unique(dim=0, sorted=True, return_inverse=True); torch.cuda.synchronize()
%timeit torch._unique_dim2_temporary_will_remove_soon(a, dim=0, sorted=True, return_inverse=False, return_counts=True); torch.cuda.synchronize()
%timeit torch._unique_dim2_temporary_will_remove_soon(a, dim=0, sorted=True, return_inverse=True, return_counts=True); torch.cuda.synchronize()
```

```
1.1.0a0+83ab8ac
190 µs ± 2.14 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
237 µs ± 1.23 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
219 µs ± 2.3 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
263 µs ± 1.15 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
```

```python
print(torch.__version__)
%timeit a.unique(sorted=True, return_inverse=False); torch.cuda.synchronize()
%timeit a.unique(sorted=True, return_inverse=True); torch.cuda.synchronize()
%timeit torch._unique2_temporary_will_remove_soon(a, sorted=True, return_inverse=False, return_counts=True); torch.cuda.synchronize()
%timeit torch._unique2_temporary_will_remove_soon(a, sorted=True, return_inverse=True, return_counts=True); torch.cuda.synchronize()
```

```
1.1.0a0+83ab8ac
232 µs ± 2.21 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
301 µs ± 1.65 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
264 µs ± 7.67 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
339 µs ± 9.2 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
```

Differential Revision: D14730905

fbshipit-source-id: 10026b4b98628a8565cc28a13317d29adf1225cc
@facebook-github-bot
Copy link
Contributor

This pull request has been merged in 773ce4f.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Projects

None yet

Development

Successfully merging this pull request may close these issues.

6 participants