Skip to content

Conversation

@jbschlosser
Copy link
Contributor

@jbschlosser jbschlosser commented Nov 8, 2024

Stack from ghstack (oldest at bottom):

This PR contains several fixes related to non-contiguous NJTs:

  1. Propagates lengths through op calls appropriately (see desc of Propagate NJT lengths through op calls #138098)
    • SDPA now calls nested_view_from_values_offsets_lengths() instead of nested_view_from_values_offsets()
  2. Allows non-contig NJTs in unsqueeze / transpose / select
  3. Expands padded dense -> NJT conversion to support non-contig NJTs
  4. (unrelated sorry) Updates split / split_with_sizes to allow for optional dim, matching the ATen signature

[ghstack-poisoned]
@pytorch-bot
Copy link

pytorch-bot bot commented Nov 8, 2024

🔗 Helpful Links

🧪 See artifacts and rendered test results at hud.pytorch.org/pr/140160

Note: Links to docs will display an error until the docs builds have been completed.

✅ No Failures

As of commit 892d613 with merge base e6c5a77 (image):
💚 Looks good so far! There are no failures yet. 💚

This comment was automatically generated by Dr. CI and updates every 15 minutes.

Copy link
Contributor

@cpuhrsch cpuhrsch left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

stamp

@jbschlosser
Copy link
Contributor Author

@pytorchbot merge

@pytorch-bot pytorch-bot bot added the ciflow/trunk Trigger trunk jobs on your pull request label Nov 8, 2024
@pytorchmergebot
Copy link
Collaborator

Merge started

Your change will be merged once all checks pass (ETA 0-4 Hours).

Learn more about merging in the wiki.

Questions? Feedback? Please reach out to the PyTorch DevX Team

Advanced Debugging
Check the merge workflow status
here

This PR contains several fixes related to non-contiguous NJTs:
1. Propagates `lengths` through op calls appropriately (see desc of #138098)
    * SDPA now calls `nested_view_from_values_offsets_lengths()` instead of `nested_view_from_values_offsets()`
2. Allows non-contig NJTs in unsqueeze / transpose / select
3. Expands padded dense -> NJT conversion to support non-contig NJTs
4. (unrelated sorry) Updates `split` / `split_with_sizes` to allow for optional `dim`, matching the ATen signature

[ghstack-poisoned]
@pytorchmergebot
Copy link
Collaborator

Merge failed

Reason: New commits were pushed while merging. Please rerun the merge command.

Details for Dev Infra team Raised by workflow job

@jbschlosser
Copy link
Contributor Author

@pytorchbot merge

@pytorchmergebot
Copy link
Collaborator

Merge started

Your change will be merged once all checks pass (ETA 0-4 Hours).

Learn more about merging in the wiki.

Questions? Feedback? Please reach out to the PyTorch DevX Team

Advanced Debugging
Check the merge workflow status
here

pytorchmergebot pushed a commit that referenced this pull request Nov 11, 2024
This PR updates OpInfo-based tests for NJTs:
* Adds extensive coverage across non-contiguous NJTs (both non-contiguous transposed and non-contiguous with holes)
    * The `_sample_njts()` helper that `sample_input_func`s utilize now produces non-contig NJTs as well
* Utilizes a `SampleInput`-based xfail system for granular classification of bugs. For example, it's possible to indicate that a class of ops is expected to fail only on non-contig with holes NJT inputs.
    * I decided on adding `SampleInput`s and utilizing this system over using test parametrization for two reasons:
        * Test perf - adding `SampleInput`s is faster than generating entire new tests
        * Avoiding the possibility of `sample_input_func`s not respecting the non-contig test parameter - this would result in silently incorrect passing of these tests. Keeping the responsibility for `SampleInput` generation firmly within each `OpInfo`'s `sample_input_func` means weirdness like this isn't possible
* Improves `SampleInput` naming for a bunch of `sample_input_func`s. This makes it easier to xfail them as needed. For example, binary / unary / other ops now use the new `_describe_njt()` helper to get a string repr that uniquely defines the type of NJT being passed to the op
* Adds appropriate `XFailRule`s to get tests passing for forward / backward / forward compile / backward compile. In general, each xfail corresponds to some bug that needs to be fixed

```python
# Represents a rule indicating how to xfail a particular test. It allows granularity
# at the device, dtype, op, and individual sample levels. This flexibility allows entire
# bugs to be represented by a single rule, even if this corresponds with multiple conceptual
# test cases across multiple ops.
@DataClass
class XFailRule:
    # expected error type
    error_type: TypeVar = Exception
    # expected error message
    error_msg: str = ".*"
    # function to indicate whether the rule applies; return True if so
    match_fn: Callable[[torch.device, torch.dtype, OpInfo, SampleInput], bool] = None
    # optional name for identifying the rule
    name: str = ""

    def match(self, device, dtype, op, sample) -> bool:
        return self.match_fn(device, dtype, op, sample)
```

Example:
```python
    # Bug when broadcasting a binary op with non-contiguous with holes NJT + dense
    # tensor with 1 in ragged dim.
    XFailRule(
        error_type=RuntimeError,
        error_msg="cannot call binary pointwise function .* with inputs of shapes",
        match_fn=lambda device, dtype, op, sample: (
            isinstance(op, BinaryUfuncInfo)
            and "noncontig_holes" in sample.name
            and "broadcasting 1 over ragged" in sample.name
        ),
        name="binary_noncontig_holes_broadcasting_1_over_ragged",
    ),
```
Pull Request resolved: #138370
Approved by: https://github.com/cpuhrsch, https://github.com/soulitzer
ghstack dependencies: #140160
pytorchmergebot pushed a commit that referenced this pull request Nov 19, 2024
### Background
This PR adds the functionality to xfail / skip on a per-`SampleInput` basis for `OpInfo` tests. See #89354 and #82669 for some requests asking for this type of functionality.

This was originally landed for NJT in #138370 and is generalized and slightly tweaked here.

### Design
#### Principles
* Clean separation among `SampleInput` generation logic, test logic that uses the `SampleInput`s, and xfail / skip logic (which will change as bugs are addressed).
* Flexibility in xfail / skip predicate specification - ideally each bug can be handled by a single skip / xfail, even if it surfaces across a specific class of ops.
    * This is important in practice for NJT, where it's common to have a bug that affects all binary ops, for example.
* Opt-in with minimal test logic changes + no substantial impact on other tests.

#### Details
The core new concept is a `SampleRule`, which can be either an `XFailRule` or `SkipRule`.

```python
@DataClass
class SampleRule(ABC):
    # function to indicate whether the rule applies to this op; return True if so
    # NB: str arg of callable is device_type
    op_match_fn: Callable[[str, OpInfo], bool] = None
    # function to indicate whether the rule applies to this sample; return True if so
    sample_match_fn: Callable[[torch.device, SampleInput], bool] = None
    # optional name for identifying the rule
    name: str = ""

@DataClass
class XFailRule(SampleRule):
    # expected error type
    error_type: TypeVar = Exception
    # expected error message
    error_msg: str = ".*"

@DataClass
class SkipRule(SampleRule):
    ...
```

* See below for example usage details, but at a high level: each test should have a corresponding list of `sample_skips_and_xfails`.
    * The list of `sample_skips_and_xfails` is traversed in order, and the first rule that matches (if any) is applied, so order can matter.
    * The PR includes a logging mechanism for matched rules accessible by setting the loglevel to `DEBUG`.
* The split between `op_match_fn` and `sample_match_fn` is made to allow pre-filtering of the list of rules to get only those that apply to the op under test.
* Each `SampleInput` is run within a subtest context so they can be individually skipped / xfailed as needed. This also means that a test will no longer stop after the first erroring `SampleInput`; all samples will be run through test logic.

### Example Usage
Consider the following OpInfo test:
```python
class MyTestCase(TestCase):
    @ops(op_db)
    def test_foo(self, device, dtype, op):
        for sample in op.sample_inputs(device, dtype, requires_grad=False):
            # do some SampleInput-based test logic
            output = op.op(sample.input, *sample.args, **sample.kwargs)
            ...
```

This is a common pattern for such tests; simply generate a list of `SampleInputs` and run them through the op. Now say you want to xfail one of these `SampleInput`s for a given op. Today, you have to xfail the entire test or hack around this in the test logic.

This PR lets you do this to get very flexible xfail / skips based on op / sample input properties:
```python
# NB: Define rules for per-SampleInput xfails / skips. These can also be defined in-line in the @ops decorator, but
# it can be more readable to maintain these somewhere else. These are attempted to be matched in order and
# the first one that matches applies, so order can matter.
FOO_SKIPS_AND_XFAILS = [
    XFailRule(
        error_type=ValueError,
        error_mg="2D inputs not supported",
        op_match_fn=lambda device, op: (
            # NB: logic for which ops this rule applies to goes here
            op.full_name == "add"
        ),
        sample_match_fn=lambda device, sample: (
            # NB: logic which samples this rule applies to goes here
            sample.input.dim() == 2
        ),
        # NB: optional rule identifier can help with debugging matched rules
        name="add_with_2D_inputs_not_supported",
    ),
    # NB: This follows a similar structure as XFailRule but without error_type / error_msg. Obviously
    # this skips a particular SampleInput instead of xfailing :)
    SkipRule(...),
    ...
]

class MyTestCase(TestCase):
    @ops(op_db)
    @sample_skips_and_xfails(FOO_SKIPS_AND_XFAILS)
    # NB: the @ops decorator automatically filters out any rules that don't apply to this op
    def test_foo(self, device, dtype, op):
        for sample, subtest_ctx in op.sample_inputs(
            # NB: use_subtests=True is required for skips / xfails to work. If skips / xfails are defined and use_subtests != True,
            # an informative error will be thrown.
            device, dtype, requires_grad=False, use_subtests=True
        ):
            # NB: this subtest context manager runs each sample input as a "subtest" and handles skips / xfails appropriately
            with subtest_ctx(self):
                # do some SampleInput-based test logic
                output = op.op(sample.input, *sample.args, **sample.kwargs)
                ...
```

More examples can be seen in `test/test_nestedtensor.py`, where this system is used in practice.

I also demonstrate usage of syntactic sugar over this system in `test/functorch/test_vmap.py`. Here, a skip for the `to()` operator is replaced with a granular xfail for `test_vmap_exhaustive()`:
```python
...
# pre-existing xfail
xfail("item"),
# new granular xfail using syntactic sugar over the general system
xfailIf(
    "to",
    lambda sample: (
        sample.kwargs["memory_format"] == torch.channels_last
    ),
),
...
```
Pull Request resolved: #140443
Approved by: https://github.com/janeyx99, https://github.com/zou3519
ghstack dependencies: #140160, #138370
pytorchmergebot pushed a commit to jakeharmon8/pytorch that referenced this pull request Nov 20, 2024
### Background
This PR adds the functionality to xfail / skip on a per-`SampleInput` basis for `OpInfo` tests. See pytorch#89354 and pytorch#82669 for some requests asking for this type of functionality.

This was originally landed for NJT in pytorch#138370 and is generalized and slightly tweaked here.

### Design
#### Principles
* Clean separation among `SampleInput` generation logic, test logic that uses the `SampleInput`s, and xfail / skip logic (which will change as bugs are addressed).
* Flexibility in xfail / skip predicate specification - ideally each bug can be handled by a single skip / xfail, even if it surfaces across a specific class of ops.
    * This is important in practice for NJT, where it's common to have a bug that affects all binary ops, for example.
* Opt-in with minimal test logic changes + no substantial impact on other tests.

#### Details
The core new concept is a `SampleRule`, which can be either an `XFailRule` or `SkipRule`.

```python
@DataClass
class SampleRule(ABC):
    # function to indicate whether the rule applies to this op; return True if so
    # NB: str arg of callable is device_type
    op_match_fn: Callable[[str, OpInfo], bool] = None
    # function to indicate whether the rule applies to this sample; return True if so
    sample_match_fn: Callable[[torch.device, SampleInput], bool] = None
    # optional name for identifying the rule
    name: str = ""

@DataClass
class XFailRule(SampleRule):
    # expected error type
    error_type: TypeVar = Exception
    # expected error message
    error_msg: str = ".*"

@DataClass
class SkipRule(SampleRule):
    ...
```

* See below for example usage details, but at a high level: each test should have a corresponding list of `sample_skips_and_xfails`.
    * The list of `sample_skips_and_xfails` is traversed in order, and the first rule that matches (if any) is applied, so order can matter.
    * The PR includes a logging mechanism for matched rules accessible by setting the loglevel to `DEBUG`.
* The split between `op_match_fn` and `sample_match_fn` is made to allow pre-filtering of the list of rules to get only those that apply to the op under test.
* Each `SampleInput` is run within a subtest context so they can be individually skipped / xfailed as needed. This also means that a test will no longer stop after the first erroring `SampleInput`; all samples will be run through test logic.

### Example Usage
Consider the following OpInfo test:
```python
class MyTestCase(TestCase):
    @ops(op_db)
    def test_foo(self, device, dtype, op):
        for sample in op.sample_inputs(device, dtype, requires_grad=False):
            # do some SampleInput-based test logic
            output = op.op(sample.input, *sample.args, **sample.kwargs)
            ...
```

This is a common pattern for such tests; simply generate a list of `SampleInputs` and run them through the op. Now say you want to xfail one of these `SampleInput`s for a given op. Today, you have to xfail the entire test or hack around this in the test logic.

This PR lets you do this to get very flexible xfail / skips based on op / sample input properties:
```python
# NB: Define rules for per-SampleInput xfails / skips. These can also be defined in-line in the @ops decorator, but
# it can be more readable to maintain these somewhere else. These are attempted to be matched in order and
# the first one that matches applies, so order can matter.
FOO_SKIPS_AND_XFAILS = [
    XFailRule(
        error_type=ValueError,
        error_mg="2D inputs not supported",
        op_match_fn=lambda device, op: (
            # NB: logic for which ops this rule applies to goes here
            op.full_name == "add"
        ),
        sample_match_fn=lambda device, sample: (
            # NB: logic which samples this rule applies to goes here
            sample.input.dim() == 2
        ),
        # NB: optional rule identifier can help with debugging matched rules
        name="add_with_2D_inputs_not_supported",
    ),
    # NB: This follows a similar structure as XFailRule but without error_type / error_msg. Obviously
    # this skips a particular SampleInput instead of xfailing :)
    SkipRule(...),
    ...
]

class MyTestCase(TestCase):
    @ops(op_db)
    @sample_skips_and_xfails(FOO_SKIPS_AND_XFAILS)
    # NB: the @ops decorator automatically filters out any rules that don't apply to this op
    def test_foo(self, device, dtype, op):
        for sample, subtest_ctx in op.sample_inputs(
            # NB: use_subtests=True is required for skips / xfails to work. If skips / xfails are defined and use_subtests != True,
            # an informative error will be thrown.
            device, dtype, requires_grad=False, use_subtests=True
        ):
            # NB: this subtest context manager runs each sample input as a "subtest" and handles skips / xfails appropriately
            with subtest_ctx(self):
                # do some SampleInput-based test logic
                output = op.op(sample.input, *sample.args, **sample.kwargs)
                ...
```

More examples can be seen in `test/test_nestedtensor.py`, where this system is used in practice.

I also demonstrate usage of syntactic sugar over this system in `test/functorch/test_vmap.py`. Here, a skip for the `to()` operator is replaced with a granular xfail for `test_vmap_exhaustive()`:
```python
...
# pre-existing xfail
xfail("item"),
# new granular xfail using syntactic sugar over the general system
xfailIf(
    "to",
    lambda sample: (
        sample.kwargs["memory_format"] == torch.channels_last
    ),
),
...
```
Pull Request resolved: pytorch#140443
Approved by: https://github.com/janeyx99, https://github.com/zou3519
ghstack dependencies: pytorch#140160, pytorch#138370
pobin6 pushed a commit to pobin6/pytorch that referenced this pull request Dec 5, 2024
This PR contains several fixes related to non-contiguous NJTs:
1. Propagates `lengths` through op calls appropriately (see desc of pytorch#138098)
    * SDPA now calls `nested_view_from_values_offsets_lengths()` instead of `nested_view_from_values_offsets()`
2. Allows non-contig NJTs in unsqueeze / transpose / select
3. Expands padded dense -> NJT conversion to support non-contig NJTs
4. (unrelated sorry) Updates `split` / `split_with_sizes` to allow for optional `dim`, matching the ATen signature
Pull Request resolved: pytorch#140160
Approved by: https://github.com/cpuhrsch
pobin6 pushed a commit to pobin6/pytorch that referenced this pull request Dec 5, 2024
This PR updates OpInfo-based tests for NJTs:
* Adds extensive coverage across non-contiguous NJTs (both non-contiguous transposed and non-contiguous with holes)
    * The `_sample_njts()` helper that `sample_input_func`s utilize now produces non-contig NJTs as well
* Utilizes a `SampleInput`-based xfail system for granular classification of bugs. For example, it's possible to indicate that a class of ops is expected to fail only on non-contig with holes NJT inputs.
    * I decided on adding `SampleInput`s and utilizing this system over using test parametrization for two reasons:
        * Test perf - adding `SampleInput`s is faster than generating entire new tests
        * Avoiding the possibility of `sample_input_func`s not respecting the non-contig test parameter - this would result in silently incorrect passing of these tests. Keeping the responsibility for `SampleInput` generation firmly within each `OpInfo`'s `sample_input_func` means weirdness like this isn't possible
* Improves `SampleInput` naming for a bunch of `sample_input_func`s. This makes it easier to xfail them as needed. For example, binary / unary / other ops now use the new `_describe_njt()` helper to get a string repr that uniquely defines the type of NJT being passed to the op
* Adds appropriate `XFailRule`s to get tests passing for forward / backward / forward compile / backward compile. In general, each xfail corresponds to some bug that needs to be fixed

```python
# Represents a rule indicating how to xfail a particular test. It allows granularity
# at the device, dtype, op, and individual sample levels. This flexibility allows entire
# bugs to be represented by a single rule, even if this corresponds with multiple conceptual
# test cases across multiple ops.
@DataClass
class XFailRule:
    # expected error type
    error_type: TypeVar = Exception
    # expected error message
    error_msg: str = ".*"
    # function to indicate whether the rule applies; return True if so
    match_fn: Callable[[torch.device, torch.dtype, OpInfo, SampleInput], bool] = None
    # optional name for identifying the rule
    name: str = ""

    def match(self, device, dtype, op, sample) -> bool:
        return self.match_fn(device, dtype, op, sample)
```

Example:
```python
    # Bug when broadcasting a binary op with non-contiguous with holes NJT + dense
    # tensor with 1 in ragged dim.
    XFailRule(
        error_type=RuntimeError,
        error_msg="cannot call binary pointwise function .* with inputs of shapes",
        match_fn=lambda device, dtype, op, sample: (
            isinstance(op, BinaryUfuncInfo)
            and "noncontig_holes" in sample.name
            and "broadcasting 1 over ragged" in sample.name
        ),
        name="binary_noncontig_holes_broadcasting_1_over_ragged",
    ),
```
Pull Request resolved: pytorch#138370
Approved by: https://github.com/cpuhrsch, https://github.com/soulitzer
ghstack dependencies: pytorch#140160
pobin6 pushed a commit to pobin6/pytorch that referenced this pull request Dec 5, 2024
### Background
This PR adds the functionality to xfail / skip on a per-`SampleInput` basis for `OpInfo` tests. See pytorch#89354 and pytorch#82669 for some requests asking for this type of functionality.

This was originally landed for NJT in pytorch#138370 and is generalized and slightly tweaked here.

### Design
#### Principles
* Clean separation among `SampleInput` generation logic, test logic that uses the `SampleInput`s, and xfail / skip logic (which will change as bugs are addressed).
* Flexibility in xfail / skip predicate specification - ideally each bug can be handled by a single skip / xfail, even if it surfaces across a specific class of ops.
    * This is important in practice for NJT, where it's common to have a bug that affects all binary ops, for example.
* Opt-in with minimal test logic changes + no substantial impact on other tests.

#### Details
The core new concept is a `SampleRule`, which can be either an `XFailRule` or `SkipRule`.

```python
@DataClass
class SampleRule(ABC):
    # function to indicate whether the rule applies to this op; return True if so
    # NB: str arg of callable is device_type
    op_match_fn: Callable[[str, OpInfo], bool] = None
    # function to indicate whether the rule applies to this sample; return True if so
    sample_match_fn: Callable[[torch.device, SampleInput], bool] = None
    # optional name for identifying the rule
    name: str = ""

@DataClass
class XFailRule(SampleRule):
    # expected error type
    error_type: TypeVar = Exception
    # expected error message
    error_msg: str = ".*"

@DataClass
class SkipRule(SampleRule):
    ...
```

* See below for example usage details, but at a high level: each test should have a corresponding list of `sample_skips_and_xfails`.
    * The list of `sample_skips_and_xfails` is traversed in order, and the first rule that matches (if any) is applied, so order can matter.
    * The PR includes a logging mechanism for matched rules accessible by setting the loglevel to `DEBUG`.
* The split between `op_match_fn` and `sample_match_fn` is made to allow pre-filtering of the list of rules to get only those that apply to the op under test.
* Each `SampleInput` is run within a subtest context so they can be individually skipped / xfailed as needed. This also means that a test will no longer stop after the first erroring `SampleInput`; all samples will be run through test logic.

### Example Usage
Consider the following OpInfo test:
```python
class MyTestCase(TestCase):
    @ops(op_db)
    def test_foo(self, device, dtype, op):
        for sample in op.sample_inputs(device, dtype, requires_grad=False):
            # do some SampleInput-based test logic
            output = op.op(sample.input, *sample.args, **sample.kwargs)
            ...
```

This is a common pattern for such tests; simply generate a list of `SampleInputs` and run them through the op. Now say you want to xfail one of these `SampleInput`s for a given op. Today, you have to xfail the entire test or hack around this in the test logic.

This PR lets you do this to get very flexible xfail / skips based on op / sample input properties:
```python
# NB: Define rules for per-SampleInput xfails / skips. These can also be defined in-line in the @ops decorator, but
# it can be more readable to maintain these somewhere else. These are attempted to be matched in order and
# the first one that matches applies, so order can matter.
FOO_SKIPS_AND_XFAILS = [
    XFailRule(
        error_type=ValueError,
        error_mg="2D inputs not supported",
        op_match_fn=lambda device, op: (
            # NB: logic for which ops this rule applies to goes here
            op.full_name == "add"
        ),
        sample_match_fn=lambda device, sample: (
            # NB: logic which samples this rule applies to goes here
            sample.input.dim() == 2
        ),
        # NB: optional rule identifier can help with debugging matched rules
        name="add_with_2D_inputs_not_supported",
    ),
    # NB: This follows a similar structure as XFailRule but without error_type / error_msg. Obviously
    # this skips a particular SampleInput instead of xfailing :)
    SkipRule(...),
    ...
]

class MyTestCase(TestCase):
    @ops(op_db)
    @sample_skips_and_xfails(FOO_SKIPS_AND_XFAILS)
    # NB: the @ops decorator automatically filters out any rules that don't apply to this op
    def test_foo(self, device, dtype, op):
        for sample, subtest_ctx in op.sample_inputs(
            # NB: use_subtests=True is required for skips / xfails to work. If skips / xfails are defined and use_subtests != True,
            # an informative error will be thrown.
            device, dtype, requires_grad=False, use_subtests=True
        ):
            # NB: this subtest context manager runs each sample input as a "subtest" and handles skips / xfails appropriately
            with subtest_ctx(self):
                # do some SampleInput-based test logic
                output = op.op(sample.input, *sample.args, **sample.kwargs)
                ...
```

More examples can be seen in `test/test_nestedtensor.py`, where this system is used in practice.

I also demonstrate usage of syntactic sugar over this system in `test/functorch/test_vmap.py`. Here, a skip for the `to()` operator is replaced with a granular xfail for `test_vmap_exhaustive()`:
```python
...
# pre-existing xfail
xfail("item"),
# new granular xfail using syntactic sugar over the general system
xfailIf(
    "to",
    lambda sample: (
        sample.kwargs["memory_format"] == torch.channels_last
    ),
),
...
```
Pull Request resolved: pytorch#140443
Approved by: https://github.com/janeyx99, https://github.com/zou3519
ghstack dependencies: pytorch#140160, pytorch#138370
@github-actions github-actions bot deleted the gh/jbschlosser/197/head branch December 9, 2024 02:15
Esquains pushed a commit to Esquains/study1 that referenced this pull request Dec 15, 2024
ghstack-source-id: 05da0de
Pull Request resolved: pytorch/pytorch#140160
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

ciflow/trunk Trigger trunk jobs on your pull request Merged topic: not user facing topic category

Projects

None yet

Development

Successfully merging this pull request may close these issues.

4 participants