-
Notifications
You must be signed in to change notification settings - Fork 26.3k
[Intel GPU] qconv_pointwise.binary XPU support #135189
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
🔗 Helpful Links🧪 See artifacts and rendered test results at hud.pytorch.org/pr/135189
Note: Links to docs will display an error until the docs builds have been completed. ✅ You can merge normally! (1 Unrelated Failure)As of commit 6a0e37a with merge base 3591657 ( FLAKY - The following job failed but was likely due to flakiness present on trunk:
This comment was automatically generated by Dr. CI and updates every 15 minutes. |
|
@pytorchbot merge |
Merge failedReason: Approvers from one of the following sets are needed:
|
|
@pytorchbot merge |
Merge startedYour change will be merged once all checks pass (ETA 0-4 Hours). Learn more about merging in the wiki. Questions? Feedback? Please reach out to the PyTorch DevX Team |
# Motivation
This PR intends to enable quantized fusion `qconv+add` and `qconv+add+relu` at Intel GPU backend.
At backend level, we register the op via schema `TORCH_SELECTIVE_NAME("onednn::qconv2d_pointwise.binary")` which is the one already defined in `x86InductorQuantzer`
At Inductor level, we have small modification at `torch/_inductor/fx_passes/quantization.py` to allow signed int8 data type(s8) during op lowering. As for the pattern matching, we greatly reuse the code existing at x86InductorQuantizer.
# UT verification
```bash
python test/inductor/test_mkldnn_pattern_matcher.py -v \
-k test_qconv2d_add_xpu \
-k test_qconv2d_add_relu_xpu 2>&1
```
# Runtime exemplification
Following is the oneDNN verbose collected from UT
```bash
onednn_verbose,primitive,exec,gpu:0,convolution,jit:ir,forward_training,src_s8::blocked:acdb::f0 wei_s8::blocked:abcd::f0 bia_f32::blocked:a::f0 dst_s8::blocked:acdb::f0,attr-scratchpad:user attr-scales:src0:0:f32+dst:0:f32+wei:1:f32 attr-zero-points:src0:0:s32+dst:0:s32 attr-post-ops:eltwise_linear:1:0.337704+sum:0.0241217+eltwise_relu,alg:convolution_direct,mb1_ic3oc6_ih8oh6kh3sh1dh0ph0_iw8ow6kw3sw1dw0pw0,0.151123
```
Pull Request resolved: #135189
Approved by: https://github.com/liangan1, https://github.com/EikanWang, https://github.com/guangyey, https://github.com/jerryzh168
ghstack dependencies: #133307
Co-authored-by: guangyey <[email protected]>
# Motivation
This PR intends to enable quantized fusion `qlinear+add` at Intel GPU backend.
At backend level, we register the op via schema `TORCH_SELECTIVE_NAME("onednn::qlinear_pointwise.binary")` and `TORCH_SELECTIVE_NAME("onednn::qlinear_pointwise.binary_tensor")` which is the one already defined in `x86InductorQuantzer`
At Inductor level, we have small modification at `torch/_inductor/fx_passes/quantization.py` to allow signed int8 data type(s8) during op lowering. As for the pattern matching, we greatly reuse the code existing at x86InductorQuantizer.
# UT verification
```bash
python test/inductor/test_mkldnn_pattern_matcher.py -v \
-k test_qlinear_add_xpu
```
# Runtime Verification
```bash
onednn_verbose,primitive,exec,gpu:0,matmul,jit:gemm:any,undef,src_s8::blocked:ab::f0 wei_s8::blocked:ab::f0 bia_f32::blocked:ab::f0_mask2 dst_f32::blocked:ab::f0,attr-scratchpad:user attr-scales:src0:0:f32+dst:0:f32+wei:2:f32 attr-zero-points:src0:0:s32 attr-post-ops:eltwise_linear:1:0.654408+sum:0.00511256+eltwise_relu,,4x4:4x4,0.0319824
```
The verbose is collected from UT. We can see the attribute ` attr-post-ops:eltwise_linear:1:0.654408+sum:0.00511256+eltwise_relu`, the post add and ReLU is successfully fused on GEMM computation.
Pull Request resolved: #135337
Approved by: https://github.com/EikanWang, https://github.com/guangyey, https://github.com/liangan1, https://github.com/jerryzh168
ghstack dependencies: #133307, #135189
Co-authored-by: guangyey <[email protected]>
# Motivation
This PR intends to enable quantized fusion `qconv+add` and `qconv+add+relu` at Intel GPU backend.
At backend level, we register the op via schema `TORCH_SELECTIVE_NAME("onednn::qconv2d_pointwise.binary")` which is the one already defined in `x86InductorQuantzer`
At Inductor level, we have small modification at `torch/_inductor/fx_passes/quantization.py` to allow signed int8 data type(s8) during op lowering. As for the pattern matching, we greatly reuse the code existing at x86InductorQuantizer.
# UT verification
```bash
python test/inductor/test_mkldnn_pattern_matcher.py -v \
-k test_qconv2d_add_xpu \
-k test_qconv2d_add_relu_xpu 2>&1
```
# Runtime exemplification
Following is the oneDNN verbose collected from UT
```bash
onednn_verbose,primitive,exec,gpu:0,convolution,jit:ir,forward_training,src_s8::blocked:acdb::f0 wei_s8::blocked:abcd::f0 bia_f32::blocked:a::f0 dst_s8::blocked:acdb::f0,attr-scratchpad:user attr-scales:src0:0:f32+dst:0:f32+wei:1:f32 attr-zero-points:src0:0:s32+dst:0:s32 attr-post-ops:eltwise_linear:1:0.337704+sum:0.0241217+eltwise_relu,alg:convolution_direct,mb1_ic3oc6_ih8oh6kh3sh1dh0ph0_iw8ow6kw3sw1dw0pw0,0.151123
```
Pull Request resolved: #135189
Approved by: https://github.com/liangan1, https://github.com/EikanWang, https://github.com/guangyey, https://github.com/jerryzh168
ghstack dependencies: #133307
Co-authored-by: guangyey <[email protected]>
# Motivation
This PR intends to enable quantized fusion `qlinear+add` at Intel GPU backend.
At backend level, we register the op via schema `TORCH_SELECTIVE_NAME("onednn::qlinear_pointwise.binary")` and `TORCH_SELECTIVE_NAME("onednn::qlinear_pointwise.binary_tensor")` which is the one already defined in `x86InductorQuantzer`
At Inductor level, we have small modification at `torch/_inductor/fx_passes/quantization.py` to allow signed int8 data type(s8) during op lowering. As for the pattern matching, we greatly reuse the code existing at x86InductorQuantizer.
# UT verification
```bash
python test/inductor/test_mkldnn_pattern_matcher.py -v \
-k test_qlinear_add_xpu
```
# Runtime Verification
```bash
onednn_verbose,primitive,exec,gpu:0,matmul,jit:gemm:any,undef,src_s8::blocked:ab::f0 wei_s8::blocked:ab::f0 bia_f32::blocked:ab::f0_mask2 dst_f32::blocked:ab::f0,attr-scratchpad:user attr-scales:src0:0:f32+dst:0:f32+wei:2:f32 attr-zero-points:src0:0:s32 attr-post-ops:eltwise_linear:1:0.654408+sum:0.00511256+eltwise_relu,,4x4:4x4,0.0319824
```
The verbose is collected from UT. We can see the attribute ` attr-post-ops:eltwise_linear:1:0.654408+sum:0.00511256+eltwise_relu`, the post add and ReLU is successfully fused on GEMM computation.
Pull Request resolved: #135337
Approved by: https://github.com/EikanWang, https://github.com/guangyey, https://github.com/liangan1, https://github.com/jerryzh168
ghstack dependencies: #133307, #135189
Co-authored-by: guangyey <[email protected]>
# Motivation
This PR is aimed to add mixed data type(AMP) support for `qconv_pointwise` op. With current PR, we allow `qconv` kernels output Tensor that is BF16, rather than FP32/INT8.
# UT verification
```bash
DNNL_VERBOSE=1 python test/inductor/test_mkldnn_pattern_matcher.py -v \
-k test_qconv2d_int8_mixed_bf16_xpu \
-k test_qconv2d_relu_int8_mixed_bf16_xpu \
-k test_qconv2d_hardtanh_int8_mixed_bf16_xpu \
-k test_qconv2d_hardswish_int8_mixed_bf16_xpu \
-k test_qconv2d_silu_int8_mixed_bf16_xpu \
-k test_qconv2d_add_int8_mixed_bf16_xpu \
-k test_qconv2d_add_relu_int8_mixed_bf16_xpu
```
# Runtime verification
```bash
#qconv + bf16
onednn_verbose,primitive,exec,gpu:0,convolution,jit:ir,forward_training,src_s8::blocked:acdb::f0 wei_s8::blocked:abcd::f0 bia_f32::blocked:a::f0 dst_bf16::blocked:acdb::f0,attr-scratchpad:user attr-scales:src0:0:f32+dst:0:f32+wei:1:f32 attr-zero-points:src0:0:s32,alg:convolution_direct,mb1_ic128oc128_ih6oh4kh3sh1dh0ph0_iw6ow4kw3sw1dw0pw0,0.0539551
# qconv_silu + bf16
onednn_verbose,primitive,exec,gpu:0,convolution,jit:ir,forward_training,src_s8::blocked:acdb::f0 wei_s8::blocked:abcd::f0 bia_undef::undef::: dst_bf16::blocked:acdb::f0,attr-scratchpad:user attr-scales:src0:0:f32+dst:0:f32+wei:1:f32 attr-zero-points:src0:0:s32 attr-post-ops:eltwise_swish:1,alg:convolution_direct,mb1_ic128oc128_ih6oh4kh3sh1dh0ph0_iw6ow4kw3sw1dw0pw0,0.0588379
# qconv_hardswish + bf16
onednn_verbose,primitive,exec,gpu:0,convolution,jit:ir,forward_training,src_s8::blocked:acdb::f0 wei_s8::blocked:abcd::f0 bia_undef::undef::: dst_bf16::blocked:acdb::f0,attr-scratchpad:user attr-scales:src0:0:f32+dst:0:f32+wei:1:f32 attr-zero-points:src0:0:s32 attr-post-ops:eltwise_hardswish:0.166667:0.5,alg:convolution_direct,mb1_ic128oc128_ih6oh4kh3sh1dh0ph0_iw6ow4kw3sw1dw0pw0,0.0568848
```
The `dst_bf16::blocked:acdb::f0` attribute in oneDNN verbose demonstrate the output tensor is computed as bf16 successfully.
Pull Request resolved: #135465
Approved by: https://github.com/liangan1, https://github.com/EikanWang, https://github.com/guangyey, https://github.com/desertfire, https://github.com/jerryzh168
ghstack dependencies: #133307, #135189, #135337
Co-authored-by: guangyey <[email protected]>
# Motivation
This PR is aimed to add mixed data type(AMP) support for `qlinear_pointwise` op. With current PR, we allow `qlinear` kernels output Tensor that is BF16, rather than FP32/INT8.
# UT verification
```bash
DNNL_VERBOSE=1 python test/inductor/test_mkldnn_pattern_matcher.py -v \
-k test_qlinear_int8_mixed_bf16_xpu \
-k test_qlinear_relu_int8_mixed_bf16_xpu \
-k test_qlinear_add_int8_mixed_bf16_xpu
```
# Runtime exemplification
```bash
#qlinear+bf16 output
onednn_verbose,primitive,exec,gpu:0,matmul,ocl:gemm_with_po:any,undef,src_s8::blocked:ab::f0 wei_s8::blocked:ab::f0 bia_bf16::blocked:ab::f0_mask2 dst_bf16::blocked:ab::f0,attr-scratchpad:user attr-scales:src0:0:f32+dst:0:f32+wei:2:f32 attr-zero-points:src0:0:s32,,4x4:4x4,0.0698242
# qlinear_add + bf16 output
onednn_verbose,primitive,exec,gpu:0,matmul,ocl:gemm_with_po:any,undef,src_s8::blocked:ab::f0 wei_s8::blocked:ab::f0 bia_bf16::blocked:ab::f0_mask2 dst_bf16::blocked:ab::f0,attr-scratchpad:user attr-scales:src0:0:f32+dst:0:f32+wei:2:f32 attr-zero-points:src0:0:s32 attr-post-ops:eltwise_linear:1:-0.677141+sum:0.0132773,,4x4:4x4,0.0419922
# qlinear_add_relu + bf16 output
onednn_verbose,primitive,exec,gpu:0,matmul,ocl:gemm_with_po:any,undef,src_s8::blocked:ab::f0 wei_s8::blocked:ab::f0 bia_bf16::blocked:ab::f0_mask2 dst_bf16::blocked:ab::f0,attr-scratchpad:user attr-scales:src0:0:f32+dst:0:f32+wei:2:f32 attr-zero-points:src0:0:s32 attr-post-ops:eltwise_linear:1:0.533096+sum:0.00416481+eltwise_relu,,4x4:4x4,0.0759277
```
As shown in the oneDNN verbose, the attribute `dst_bf16::blocked:ab::f0` demonstrate that we could successfully output a bf16 tensor in int8 gemm.
Pull Request resolved: #136753
Approved by: https://github.com/EikanWang, https://github.com/guangyey, https://github.com/desertfire, https://github.com/jerryzh168
ghstack dependencies: #133307, #135189, #135337, #135465
Co-authored-by: guangyey <[email protected]>
# Motivation
This PR is aimed to add mixed data type(AMP) support for `qconv_pointwise` op. With current PR, we allow `qconv` kernels output Tensor that is BF16, rather than FP32/INT8.
# UT verification
```bash
DNNL_VERBOSE=1 python test/inductor/test_mkldnn_pattern_matcher.py -v \
-k test_qconv2d_int8_mixed_bf16_xpu \
-k test_qconv2d_relu_int8_mixed_bf16_xpu \
-k test_qconv2d_hardtanh_int8_mixed_bf16_xpu \
-k test_qconv2d_hardswish_int8_mixed_bf16_xpu \
-k test_qconv2d_silu_int8_mixed_bf16_xpu \
-k test_qconv2d_add_int8_mixed_bf16_xpu \
-k test_qconv2d_add_relu_int8_mixed_bf16_xpu
```
# Runtime verification
```bash
#qconv + bf16
onednn_verbose,primitive,exec,gpu:0,convolution,jit:ir,forward_training,src_s8::blocked:acdb::f0 wei_s8::blocked:abcd::f0 bia_f32::blocked:a::f0 dst_bf16::blocked:acdb::f0,attr-scratchpad:user attr-scales:src0:0:f32+dst:0:f32+wei:1:f32 attr-zero-points:src0:0:s32,alg:convolution_direct,mb1_ic128oc128_ih6oh4kh3sh1dh0ph0_iw6ow4kw3sw1dw0pw0,0.0539551
# qconv_silu + bf16
onednn_verbose,primitive,exec,gpu:0,convolution,jit:ir,forward_training,src_s8::blocked:acdb::f0 wei_s8::blocked:abcd::f0 bia_undef::undef::: dst_bf16::blocked:acdb::f0,attr-scratchpad:user attr-scales:src0:0:f32+dst:0:f32+wei:1:f32 attr-zero-points:src0:0:s32 attr-post-ops:eltwise_swish:1,alg:convolution_direct,mb1_ic128oc128_ih6oh4kh3sh1dh0ph0_iw6ow4kw3sw1dw0pw0,0.0588379
# qconv_hardswish + bf16
onednn_verbose,primitive,exec,gpu:0,convolution,jit:ir,forward_training,src_s8::blocked:acdb::f0 wei_s8::blocked:abcd::f0 bia_undef::undef::: dst_bf16::blocked:acdb::f0,attr-scratchpad:user attr-scales:src0:0:f32+dst:0:f32+wei:1:f32 attr-zero-points:src0:0:s32 attr-post-ops:eltwise_hardswish:0.166667:0.5,alg:convolution_direct,mb1_ic128oc128_ih6oh4kh3sh1dh0ph0_iw6ow4kw3sw1dw0pw0,0.0568848
```
The `dst_bf16::blocked:acdb::f0` attribute in oneDNN verbose demonstrate the output tensor is computed as bf16 successfully.
Pull Request resolved: #135465
Approved by: https://github.com/liangan1, https://github.com/EikanWang, https://github.com/guangyey, https://github.com/desertfire, https://github.com/jerryzh168
ghstack dependencies: #133307, #135189, #135337
Co-authored-by: guangyey <[email protected]>
# Motivation
This PR is aimed to add mixed data type(AMP) support for `qlinear_pointwise` op. With current PR, we allow `qlinear` kernels output Tensor that is BF16, rather than FP32/INT8.
# UT verification
```bash
DNNL_VERBOSE=1 python test/inductor/test_mkldnn_pattern_matcher.py -v \
-k test_qlinear_int8_mixed_bf16_xpu \
-k test_qlinear_relu_int8_mixed_bf16_xpu \
-k test_qlinear_add_int8_mixed_bf16_xpu
```
# Runtime exemplification
```bash
#qlinear+bf16 output
onednn_verbose,primitive,exec,gpu:0,matmul,ocl:gemm_with_po:any,undef,src_s8::blocked:ab::f0 wei_s8::blocked:ab::f0 bia_bf16::blocked:ab::f0_mask2 dst_bf16::blocked:ab::f0,attr-scratchpad:user attr-scales:src0:0:f32+dst:0:f32+wei:2:f32 attr-zero-points:src0:0:s32,,4x4:4x4,0.0698242
# qlinear_add + bf16 output
onednn_verbose,primitive,exec,gpu:0,matmul,ocl:gemm_with_po:any,undef,src_s8::blocked:ab::f0 wei_s8::blocked:ab::f0 bia_bf16::blocked:ab::f0_mask2 dst_bf16::blocked:ab::f0,attr-scratchpad:user attr-scales:src0:0:f32+dst:0:f32+wei:2:f32 attr-zero-points:src0:0:s32 attr-post-ops:eltwise_linear:1:-0.677141+sum:0.0132773,,4x4:4x4,0.0419922
# qlinear_add_relu + bf16 output
onednn_verbose,primitive,exec,gpu:0,matmul,ocl:gemm_with_po:any,undef,src_s8::blocked:ab::f0 wei_s8::blocked:ab::f0 bia_bf16::blocked:ab::f0_mask2 dst_bf16::blocked:ab::f0,attr-scratchpad:user attr-scales:src0:0:f32+dst:0:f32+wei:2:f32 attr-zero-points:src0:0:s32 attr-post-ops:eltwise_linear:1:0.533096+sum:0.00416481+eltwise_relu,,4x4:4x4,0.0759277
```
As shown in the oneDNN verbose, the attribute `dst_bf16::blocked:ab::f0` demonstrate that we could successfully output a bf16 tensor in int8 gemm.
Pull Request resolved: #136753
Approved by: https://github.com/EikanWang, https://github.com/guangyey, https://github.com/desertfire, https://github.com/jerryzh168
ghstack dependencies: #133307, #135189, #135337, #135465
Co-authored-by: guangyey <[email protected]>
Motivation
This PR intends to enable quantized fusion
qconv+addandqconv+add+reluat Intel GPU backend.At backend level, we register the op via schema
TORCH_SELECTIVE_NAME("onednn::qconv2d_pointwise.binary")which is the one already defined inx86InductorQuantzerAt Inductor level, we have small modification at
torch/_inductor/fx_passes/quantization.pyto allow signed int8 data type(s8) during op lowering. As for the pattern matching, we greatly reuse the code existing at x86InductorQuantizer.UT verification
python test/inductor/test_mkldnn_pattern_matcher.py -v \ -k test_qconv2d_add_xpu \ -k test_qconv2d_add_relu_xpu 2>&1Runtime exemplification
Following is the oneDNN verbose collected from UT
Stack from ghstack (oldest at bottom):
cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10 @voznesenskym @penguinwu @EikanWang @Guobing-Chen @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov