-
Notifications
You must be signed in to change notification settings - Fork 26.3k
[CUDA] Abate SoftMax.cu compiler warning spam
#128468
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
🔗 Helpful Links🧪 See artifacts and rendered test results at hud.pytorch.org/pr/128468
Note: Links to docs will display an error until the docs builds have been completed. ✅ No FailuresAs of commit 0e9196b with merge base 70a1e85 ( This comment was automatically generated by Dr. CI and updates every 15 minutes. |
valentinandrei
left a comment
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Sorry for the spam. Thanks for fixing it.
|
@pytorchmergebot merge |
Merge startedYour change will be merged once all checks pass (ETA 0-4 Hours). Learn more about merging in the wiki. Questions? Feedback? Please reach out to the PyTorch DevX Team |
Avoids excessively spammy warnings such as ``` pytorch/aten/src/ATen/native/cuda/SoftMax.cu(844): warning pytorch#191-D: type qualifier is meaningless on cast type [&] { const auto& the_type = input.scalar_type(); constexpr const char* at_dispatch_name = "host_softmax"; at::ScalarType _st = ::detail::scalar_type(the_type); ; switch (_st) { case at::ScalarType::Double: { do { if constexpr (!at::should_include_kernel_dtype( at_dispatch_name, at::ScalarType::Double)) { do { ::c10::detail::deprecated_AT_ERROR(); if (!(false)) { ::c10::detail::torchCheckFail( __func__, "/workspace/pytorch/aten/src/ATen/native/cuda/SoftMax.cu", static_cast<uint32_t>(844), (::c10::detail::torchCheckMsgImpl( "Expected " "false" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", ::c10::str("dtype '", toString(at::ScalarType::Double), "' not selected for kernel tag ", at_dispatch_name)))); }; } while (false); } } while (0); using scalar_t __attribute__((__unused__)) = c10::impl::ScalarTypeToCPPTypeT<at::ScalarType::Double>; return [&] { using accscalar_t = acc_type<scalar_t, true>; if (!half_to_float) { auto output_ptr = output.mutable_data_ptr<scalar_t>(); auto input_ptr = input.const_data_ptr<scalar_t>(); if (dim_size <= 1024 && dim_size*sizeof(scalar_t) <= 4096) { int64_t remaining = outer_size; int64_t chunk_size = (1L << 30L) / dim_size; while(remaining > 0) { dispatch_softmax_forward<scalar_t, scalar_t, accscalar_t, is_log_softmax, false>( output_ptr, input_ptr, dim_size, dim_size, std::min<int64_t>(remaining, chunk_size), nullptr ); input_ptr += chunk_size * dim_size; output_ptr += chunk_size * dim_size; remaining -= chunk_size; } } else { constexpr int ILP = sizeof(float4) / sizeof(scalar_t); dim3 block = SoftMaxForward_getBlockSize(dim_size); size_t smem_reduction_sz = block.x / 32 * sizeof(accscalar_t); auto max_elements_per_smem = (at::cuda::getCurrentDeviceProperties()->sharedMemPerBlock - smem_reduction_sz) / sizeof(scalar_t); bool can_use_smem = dim_size < max_elements_per_smem; can_use_smem &= !(reinterpret_cast<const uintptr_t>(input_ptr) % ALIGN_BYTES); can_use_smem &= (!(reinterpret_cast<uintptr_t>(output_ptr) % ALIGN_BYTES)); can_use_smem &= !(dim_size % ILP); if (can_use_smem) { size_t smem_sz = dim_size * sizeof(scalar_t) + smem_reduction_sz; cunn_SoftMaxForwardSmem<ILP, scalar_t, accscalar_t, scalar_t, Epilogue> <<<grid, block, smem_sz, stream>>>(output_ptr, input_ptr, dim_size); } else { cunn_SoftMaxForward<ILP, scalar_t, accscalar_t, scalar_t, Epilogue> <<<grid, block, smem_reduction_sz, stream>>>(output_ptr, input_ptr, dim_size); } do { const cudaError_t __err = cudaGetLastError(); c10::cuda::c10_cuda_check_implementation( static_cast<int32_t>(__err), "/workspace/pytorch/aten/src/ATen/native/cuda/SoftMax.cu", __func__, static_cast<uint32_t>(880), true); } while (0); } } else { auto output_ptr = output.mutable_data_ptr<accscalar_t>(); auto input_ptr = input.const_data_ptr<scalar_t>(); if (dim_size <= 1024 && dim_size*sizeof(scalar_t) <= 4096) { int64_t remaining = outer_size; int64_t chunk_size = (1<<30) / dim_size; while(remaining > 0) { dispatch_softmax_forward<scalar_t, accscalar_t, accscalar_t, is_log_softmax, false>( output_ptr, input_ptr, dim_size, dim_size, std::min<int64_t>(remaining, chunk_size), nullptr ); input_ptr += chunk_size * dim_size; output_ptr += chunk_size * dim_size; remaining -= chunk_size; } } else { constexpr int ILP = sizeof(float4) / sizeof(scalar_t); dim3 block = SoftMaxForward_getBlockSize(dim_size); size_t smem_reduction_sz = block.x / 32 * sizeof(accscalar_t); auto max_elements_per_smem = (at::cuda::getCurrentDeviceProperties()->sharedMemPerBlock - smem_reduction_sz) / sizeof(scalar_t); bool can_use_smem = dim_size < max_elements_per_smem; can_use_smem &= !(reinterpret_cast<const uintptr_t>(input_ptr) % ALIGN_BYTES); can_use_smem &= (!(reinterpret_cast<uintptr_t>(output_ptr) % ALIGN_BYTES)); can_use_smem &= !(dim_size % ILP); if (can_use_smem) { size_t smem_sz = dim_size * sizeof(scalar_t) + smem_reduction_sz; cunn_SoftMaxForwardSmem<ILP, scalar_t, accscalar_t, accscalar_t, Epilogue> <<<grid, block, smem_sz, stream>>>(output_ptr, input_ptr, dim_size); } else { cunn_SoftMaxForward<ILP, scalar_t, accscalar_t, accscalar_t, Epilogue> <<<grid, block, smem_reduction_sz, stream>>>(output_ptr, input_ptr, dim_size); } do { const cudaError_t __err = cudaGetLastError(); c10::cuda::c10_cuda_check_implementation( static_cast<int32_t>(__err), "/workspace/pytorch/aten/src/ATen/native/cuda/SoftMax.cu", __func__, static_cast<uint32_t>(916), true); } while (0); } } }(); } case at::ScalarType::Float: { do { if constexpr (!at::should_include_kernel_dtype( at_dispatch_name, at::ScalarType::Float)) { do { ::c10::detail::deprecated_AT_ERROR(); if (!(false)) { ::c10::detail::torchCheckFail( __func__, "/workspace/pytorch/aten/src/ATen/native/cuda/SoftMax.cu", static_cast<uint32_t>(844), (::c10::detail::torchCheckMsgImpl( "Expected " "false" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", ::c10::str("dtype '", toString(at::ScalarType::Float), "' not selected for kernel tag ", at_dispatch_name)))); }; } while (false); } } while (0); using scalar_t __attribute__((__unused__)) = c10::impl::ScalarTypeToCPPTypeT<at::ScalarType::Float>; return [&] { using accscalar_t = acc_type<scalar_t, true>; if (!half_to_float) { auto output_ptr = output.mutable_data_ptr<scalar_t>(); auto input_ptr = input.const_data_ptr<scalar_t>(); if (dim_size <= 1024 && dim_size*sizeof(scalar_t) <= 4096) { int64_t remaining = outer_size; int64_t chunk_size = (1L << 30L) / dim_size; while(remaining > 0) { dispatch_softmax_forward<scalar_t, scalar_t, accscalar_t, is_log_softmax, false>( output_ptr, input_ptr, dim_size, dim_size, std::min<int64_t>(remaining, chunk_size), nullptr ); input_ptr += chunk_size * dim_size; output_ptr += chunk_size * dim_size; remaining -= chunk_size; } } else { constexpr int ILP = sizeof(float4) / sizeof(scalar_t); dim3 block = SoftMaxForward_getBlockSize(dim_size); size_t smem_reduction_sz = block.x / 32 * sizeof(accscalar_t); auto max_elements_per_smem = (at::cuda::getCurrentDeviceProperties()->sharedMemPerBlock - smem_reduction_sz) / sizeof(scalar_t); bool can_use_smem = dim_size < max_elements_per_smem; can_use_smem &= !(reinterpret_cast<const uintptr_t>(input_ptr) % ALIGN_BYTES); can_use_smem &= (!(reinterpret_cast<uintptr_t>(output_ptr) % ALIGN_BYTES)); can_use_smem &= !(dim_size % ILP); if (can_use_smem) { size_t smem_sz = dim_size * sizeof(scalar_t) + smem_reduction_sz; cunn_SoftMaxForwardSmem<ILP, scalar_t, accscalar_t, scalar_t, Epilogue> <<<grid, block, smem_sz, stream>>>(output_ptr, input_ptr, dim_size); } else { cunn_SoftMaxForward<ILP, scalar_t, accscalar_t, scalar_t, Epilogue> <<<grid, block, smem_reduction_sz, stream>>>(output_ptr, input_ptr, dim_size); } do { const cudaError_t __err = cudaGetLastError(); c10::cuda::c10_cuda_check_implementation( static_cast<int32_t>(__err), "/workspace/pytorch/aten/src/ATen/native/cuda/SoftMax.cu", __func__, static_cast<uint32_t>(880), true); } while (0); } } else { auto output_ptr = output.mutable_data_ptr<accscalar_t>(); auto input_ptr = input.const_data_ptr<scalar_t>(); if (dim_size <= 1024 && dim_size*sizeof(scalar_t) <= 4096) { int64_t remaining = outer_size; int64_t chunk_size = (1<<30) / dim_size; while(remaining > 0) { dispatch_softmax_forward<scalar_t, accscalar_t, accscalar_t, is_log_softmax, false>( output_ptr, input_ptr, dim_size, dim_size, std::min<int64_t>(remaining, chunk_size), nullptr ); input_ptr += chunk_size * dim_size; output_ptr += chunk_size * dim_size; remaining -= chunk_size; } } else { constexpr int ILP = sizeof(float4) / sizeof(scalar_t); dim3 block = SoftMaxForward_getBlockSize(dim_size); size_t smem_reduction_sz = block.x / 32 * sizeof(accscalar_t); auto max_elements_per_smem = (at::cuda::getCurrentDeviceProperties()->sharedMemPerBlock - smem_reduction_sz) / sizeof(scalar_t); bool can_use_smem = dim_size < max_elements_per_smem; can_use_smem &= !(reinterpret_cast<const uintptr_t>(input_ptr) % ALIGN_BYTES); can_use_smem &= (!(reinterpret_cast<uintptr_t>(output_ptr) % ALIGN_BYTES)); can_use_smem &= !(dim_size % ILP); if (can_use_smem) { size_t smem_sz = dim_size * sizeof(scalar_t) + smem_reduction_sz; cunn_SoftMaxForwardSmem<ILP, scalar_t, accscalar_t, accscalar_t, Epilogue> <<<grid, block, smem_sz, stream>>>(output_ptr, input_ptr, dim_size); } else { cunn_SoftMaxForward<ILP, scalar_t, accscalar_t, accscalar_t, Epilogue> <<<grid, block, smem_reduction_sz, stream>>>(output_ptr, input_ptr, dim_size); } do { const cudaError_t __err = cudaGetLastError(); c10::cuda::c10_cuda_check_implementation( static_cast<int32_t>(__err), "/workspace/pytorch/aten/src/ATen/native/cuda/SoftMax.cu", __func__, static_cast<uint32_t>(916), true); } while (0); } } }(); } case at::ScalarType::Half: { do { if constexpr (!at::should_include_kernel_dtype( at_dispatch_name, at::ScalarType::Half)) { do { ::c10::detail::deprecated_AT_ERROR(); if (!(false)) { ::c10::detail::torchCheckFail( __func__, "/workspace/pytorch/aten/src/ATen/native/cuda/SoftMax.cu", static_cast<uint32_t>(844), (::c10::detail::torchCheckMsgImpl( "Expected " "false" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", ::c10::str("dtype '", toString(at::ScalarType::Half), "' not selected for kernel tag ", at_dispatch_name)))); }; } while (false); } } while (0); using scalar_t __attribute__((__unused__)) = c10::impl::ScalarTypeToCPPTypeT<at::ScalarType::Half>; return [&] { using accscalar_t = acc_type<scalar_t, true>; if (!half_to_float) { auto output_ptr = output.mutable_data_ptr<scalar_t>(); auto input_ptr = input.const_data_ptr<scalar_t>(); if (dim_size <= 1024 && dim_size*sizeof(scalar_t) <= 4096) { int64_t remaining = outer_size; int64_t chunk_size = (1L << 30L) / dim_size; while(remaining > 0) { dispatch_softmax_forward<scalar_t, scalar_t, accscalar_t, is_log_softmax, false>( output_ptr, input_ptr, dim_size, dim_size, std::min<int64_t>(remaining, chunk_size), nullptr ); input_ptr += chunk_size * dim_size; output_ptr += chunk_size * dim_size; remaining -= chunk_size; } } else { constexpr int ILP = sizeof(float4) / sizeof(scalar_t); dim3 block = SoftMaxForward_getBlockSize(dim_size); size_t smem_reduction_sz = block.x / 32 * sizeof(accscalar_t); auto max_elements_per_smem = (at::cuda::getCurrentDeviceProperties()->sharedMemPerBlock - smem_reduction_sz) / sizeof(scalar_t); bool can_use_smem = dim_size < max_elements_per_smem; can_use_smem &= !(reinterpret_cast<const uintptr_t>(input_ptr) % ALIGN_BYTES); can_use_smem &= (!(reinterpret_cast<uintptr_t>(output_ptr) % ALIGN_BYTES)); can_use_smem &= !(dim_size % ILP); if (can_use_smem) { size_t smem_sz = dim_size * sizeof(scalar_t) + smem_reduction_sz; cunn_SoftMaxForwardSmem<ILP, scalar_t, accscalar_t, scalar_t, Epilogue> <<<grid, block, smem_sz, stream>>>(output_ptr, input_ptr, dim_size); } else { cunn_SoftMaxForward<ILP, scalar_t, accscalar_t, scalar_t, Epilogue> <<<grid, block, smem_reduction_sz, stream>>>(output_ptr, input_ptr, dim_size); } do { const cudaError_t __err = cudaGetLastError(); c10::cuda::c10_cuda_check_implementation( static_cast<int32_t>(__err), "/workspace/pytorch/aten/src/ATen/native/cuda/SoftMax.cu", __func__, static_cast<uint32_t>(880), true); } while (0); } } else { auto output_ptr = output.mutable_data_ptr<accscalar_t>(); auto input_ptr = input.const_data_ptr<scalar_t>(); if (dim_size <= 1024 && dim_size*sizeof(scalar_t) <= 4096) { int64_t remaining = outer_size; int64_t chunk_size = (1<<30) / dim_size; while(remaining > 0) { dispatch_softmax_forward<scalar_t, accscalar_t, accscalar_t, is_log_softmax, false>( output_ptr, input_ptr, dim_size, dim_size, std::min<int64_t>(remaining, chunk_size), nullptr ); input_ptr += chunk_size * dim_size; output_ptr += chunk_size * dim_size; remaining -= chunk_size; } } else { constexpr int ILP = sizeof(float4) / sizeof(scalar_t); dim3 block = SoftMaxForward_getBlockSize(dim_size); size_t smem_reduction_sz = block.x / 32 * sizeof(accscalar_t); auto max_elements_per_smem = (at::cuda::getCurrentDeviceProperties()->sharedMemPerBlock - smem_reduction_sz) / sizeof(scalar_t); bool can_use_smem = dim_size < max_elements_per_smem; can_use_smem &= !(reinterpret_cast<const uintptr_t>(input_ptr) % ALIGN_BYTES); can_use_smem &= (!(reinterpret_cast<uintptr_t>(output_ptr) % ALIGN_BYTES)); can_use_smem &= !(dim_size % ILP); if (can_use_smem) { size_t smem_sz = dim_size * sizeof(scalar_t) + smem_reduction_sz; cunn_SoftMaxForwardSmem<ILP, scalar_t, accscalar_t, accscalar_t, Epilogue> <<<grid, block, smem_sz, stream>>>(output_ptr, input_ptr, dim_size); } else { cunn_SoftMaxForward<ILP, scalar_t, accscalar_t, accscalar_t, Epilogue> <<<grid, block, smem_reduction_sz, stream>>>(output_ptr, input_ptr, dim_size); } do { const cudaError_t __err = cudaGetLastError(); c10::cuda::c10_cuda_check_implementation( static_cast<int32_t>(__err), "/workspace/pytorch/aten/src/ATen/native/cuda/SoftMax.cu", __func__, static_cast<uint32_t>(916), true); } while (0); } } }(); } case at::ScalarType::BFloat16: { do { if constexpr (!at::should_include_kernel_dtype( at_dispatch_name, at::ScalarType::BFloat16)) { do { ::c10::detail::deprecated_AT_ERROR(); if (!(false)) { ::c10::detail::torchCheckFail( __func__, "/workspace/pytorch/aten/src/ATen/native/cuda/SoftMax.cu", static_cast<uint32_t>(844), (::c10::detail::torchCheckMsgImpl( "Expected " "false" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", ::c10::str("dtype '", toString(at::ScalarType::BFloat16), "' not selected for kernel tag ", at_dispatch_name)))); }; } while (false); } } while (0); using scalar_t __attribute__((__unused__)) = c10::impl::ScalarTypeToCPPTypeT<at::ScalarType::BFloat16>; return [&] { using accscalar_t = acc_type<scalar_t, true>; if (!half_to_float) { auto output_ptr = output.mutable_data_ptr<scalar_t>(); auto input_ptr = input.const_data_ptr<scalar_t>(); if (dim_size <= 1024 && dim_size*sizeof(scalar_t) <= 4096) { int64_t remaining = outer_size; int64_t chunk_size = (1L << 30L) / dim_size; while(remaining > 0) { dispatch_softmax_forward<scalar_t, scalar_t, accscalar_t, is_log_softmax, false>( output_ptr, input_ptr, dim_size, dim_size, std::min<int64_t>(remaining, chunk_size), nullptr ); input_ptr += chunk_size * dim_size; output_ptr += chunk_size * dim_size; remaining -= chunk_size; } } else { constexpr int ILP = sizeof(float4) / sizeof(scalar_t); dim3 block = SoftMaxForward_getBlockSize(dim_size); size_t smem_reduction_sz = block.x / 32 * sizeof(accscalar_t); auto max_elements_per_smem = (at::cuda::getCurrentDeviceProperties()->sharedMemPerBlock - smem_reduction_sz) / sizeof(scalar_t); bool can_use_smem = dim_size < max_elements_per_smem; can_use_smem &= !(reinterpret_cast<const uintptr_t>(input_ptr) % ALIGN_BYTES); can_use_smem &= (!(reinterpret_cast<uintptr_t>(output_ptr) % ALIGN_BYTES)); can_use_smem &= !(dim_size % ILP); if (can_use_smem) { size_t smem_sz = dim_size * sizeof(scalar_t) + smem_reduction_sz; cunn_SoftMaxForwardSmem<ILP, scalar_t, accscalar_t, scalar_t, Epilogue> <<<grid, block, smem_sz, stream>>>(output_ptr, input_ptr, dim_size); } else { cunn_SoftMaxForward<ILP, scalar_t, accscalar_t, scalar_t, Epilogue> <<<grid, block, smem_reduction_sz, stream>>>(output_ptr, input_ptr, dim_size); } do { const cudaError_t __err = cudaGetLastError(); c10::cuda::c10_cuda_check_implementation( static_cast<int32_t>(__err), "/workspace/pytorch/aten/src/ATen/native/cuda/SoftMax.cu", __func__, static_cast<uint32_t>(880), true); } while (0); } } else { auto output_ptr = output.mutable_data_ptr<accscalar_t>(); auto input_ptr = input.const_data_ptr<scalar_t>(); if (dim_size <= 1024 && dim_size*sizeof(scalar_t) <= 4096) { int64_t remaining = outer_size; int64_t chunk_size = (1<<30) / dim_size; while(remaining > 0) { dispatch_softmax_forward<scalar_t, accscalar_t, accscalar_t, is_log_softmax, false>( output_ptr, input_ptr, dim_size, dim_size, std::min<int64_t>(remaining, chunk_size), nullptr ); input_ptr += chunk_size * dim_size; output_ptr += chunk_size * dim_size; remaining -= chunk_size; } } else { constexpr int ILP = sizeof(float4) / sizeof(scalar_t); dim3 block = SoftMaxForward_getBlockSize(dim_size); size_t smem_reduction_sz = block.x / 32 * sizeof(accscalar_t); auto max_elements_per_smem = (at::cuda::getCurrentDeviceProperties()->sharedMemPerBlock - smem_reduction_sz) / sizeof(scalar_t); bool can_use_smem = dim_size < max_elements_per_smem; can_use_smem &= !(reinterpret_cast<const uintptr_t>(input_ptr) % ALIGN_BYTES); can_use_smem &= (!(reinterpret_cast<uintptr_t>(output_ptr) % ALIGN_BYTES)); can_use_smem &= !(dim_size % ILP); if (can_use_smem) { size_t smem_sz = dim_size * sizeof(scalar_t) + smem_reduction_sz; cunn_SoftMaxForwardSmem<ILP, scalar_t, accscalar_t, accscalar_t, Epilogue> <<<grid, block, smem_sz, stream>>>(output_ptr, input_ptr, dim_size); } else { cunn_SoftMaxForward<ILP, scalar_t, accscalar_t, accscalar_t, Epilogue> <<<grid, block, smem_reduction_sz, stream>>>(output_ptr, input_ptr, dim_size); } do { const cudaError_t __err = cudaGetLastError(); c10::cuda::c10_cuda_check_implementation( static_cast<int32_t>(__err), "/workspace/pytorch/aten/src/ATen/native/cuda/SoftMax.cu", __func__, static_cast<uint32_t>(916), true); } while (0); } } }(); } default: do { ::c10::detail::deprecated_AT_ERROR(); if (!(false)) { ::c10::detail::torchCheckFail( __func__, "/workspace/pytorch/aten/src/ATen/native/cuda/SoftMax.cu", static_cast<uint32_t>(844), (::c10::detail::torchCheckMsgImpl( "Expected " "false" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", ::c10::str('"', at_dispatch_name, "\" not implemented for '", toString(_st), "'")))); }; } while (false); } }() ``` and ``` SoftMax.cu:844: warning: comparison of integer expressions of different signedness: ‘int64_t’ {aka ‘long int’} and ‘long unsigned int’ [-Wsign-compare] ``` Pull Request resolved: pytorch#128468 Approved by: https://github.com/valentinandrei
Avoids excessively spammy warnings such as ``` pytorch/aten/src/ATen/native/cuda/SoftMax.cu(844): warning pytorch#191-D: type qualifier is meaningless on cast type [&] { const auto& the_type = input.scalar_type(); constexpr const char* at_dispatch_name = "host_softmax"; at::ScalarType _st = ::detail::scalar_type(the_type); ; switch (_st) { case at::ScalarType::Double: { do { if constexpr (!at::should_include_kernel_dtype( at_dispatch_name, at::ScalarType::Double)) { do { ::c10::detail::deprecated_AT_ERROR(); if (!(false)) { ::c10::detail::torchCheckFail( __func__, "/workspace/pytorch/aten/src/ATen/native/cuda/SoftMax.cu", static_cast<uint32_t>(844), (::c10::detail::torchCheckMsgImpl( "Expected " "false" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", ::c10::str("dtype '", toString(at::ScalarType::Double), "' not selected for kernel tag ", at_dispatch_name)))); }; } while (false); } } while (0); using scalar_t __attribute__((__unused__)) = c10::impl::ScalarTypeToCPPTypeT<at::ScalarType::Double>; return [&] { using accscalar_t = acc_type<scalar_t, true>; if (!half_to_float) { auto output_ptr = output.mutable_data_ptr<scalar_t>(); auto input_ptr = input.const_data_ptr<scalar_t>(); if (dim_size <= 1024 && dim_size*sizeof(scalar_t) <= 4096) { int64_t remaining = outer_size; int64_t chunk_size = (1L << 30L) / dim_size; while(remaining > 0) { dispatch_softmax_forward<scalar_t, scalar_t, accscalar_t, is_log_softmax, false>( output_ptr, input_ptr, dim_size, dim_size, std::min<int64_t>(remaining, chunk_size), nullptr ); input_ptr += chunk_size * dim_size; output_ptr += chunk_size * dim_size; remaining -= chunk_size; } } else { constexpr int ILP = sizeof(float4) / sizeof(scalar_t); dim3 block = SoftMaxForward_getBlockSize(dim_size); size_t smem_reduction_sz = block.x / 32 * sizeof(accscalar_t); auto max_elements_per_smem = (at::cuda::getCurrentDeviceProperties()->sharedMemPerBlock - smem_reduction_sz) / sizeof(scalar_t); bool can_use_smem = dim_size < max_elements_per_smem; can_use_smem &= !(reinterpret_cast<const uintptr_t>(input_ptr) % ALIGN_BYTES); can_use_smem &= (!(reinterpret_cast<uintptr_t>(output_ptr) % ALIGN_BYTES)); can_use_smem &= !(dim_size % ILP); if (can_use_smem) { size_t smem_sz = dim_size * sizeof(scalar_t) + smem_reduction_sz; cunn_SoftMaxForwardSmem<ILP, scalar_t, accscalar_t, scalar_t, Epilogue> <<<grid, block, smem_sz, stream>>>(output_ptr, input_ptr, dim_size); } else { cunn_SoftMaxForward<ILP, scalar_t, accscalar_t, scalar_t, Epilogue> <<<grid, block, smem_reduction_sz, stream>>>(output_ptr, input_ptr, dim_size); } do { const cudaError_t __err = cudaGetLastError(); c10::cuda::c10_cuda_check_implementation( static_cast<int32_t>(__err), "/workspace/pytorch/aten/src/ATen/native/cuda/SoftMax.cu", __func__, static_cast<uint32_t>(880), true); } while (0); } } else { auto output_ptr = output.mutable_data_ptr<accscalar_t>(); auto input_ptr = input.const_data_ptr<scalar_t>(); if (dim_size <= 1024 && dim_size*sizeof(scalar_t) <= 4096) { int64_t remaining = outer_size; int64_t chunk_size = (1<<30) / dim_size; while(remaining > 0) { dispatch_softmax_forward<scalar_t, accscalar_t, accscalar_t, is_log_softmax, false>( output_ptr, input_ptr, dim_size, dim_size, std::min<int64_t>(remaining, chunk_size), nullptr ); input_ptr += chunk_size * dim_size; output_ptr += chunk_size * dim_size; remaining -= chunk_size; } } else { constexpr int ILP = sizeof(float4) / sizeof(scalar_t); dim3 block = SoftMaxForward_getBlockSize(dim_size); size_t smem_reduction_sz = block.x / 32 * sizeof(accscalar_t); auto max_elements_per_smem = (at::cuda::getCurrentDeviceProperties()->sharedMemPerBlock - smem_reduction_sz) / sizeof(scalar_t); bool can_use_smem = dim_size < max_elements_per_smem; can_use_smem &= !(reinterpret_cast<const uintptr_t>(input_ptr) % ALIGN_BYTES); can_use_smem &= (!(reinterpret_cast<uintptr_t>(output_ptr) % ALIGN_BYTES)); can_use_smem &= !(dim_size % ILP); if (can_use_smem) { size_t smem_sz = dim_size * sizeof(scalar_t) + smem_reduction_sz; cunn_SoftMaxForwardSmem<ILP, scalar_t, accscalar_t, accscalar_t, Epilogue> <<<grid, block, smem_sz, stream>>>(output_ptr, input_ptr, dim_size); } else { cunn_SoftMaxForward<ILP, scalar_t, accscalar_t, accscalar_t, Epilogue> <<<grid, block, smem_reduction_sz, stream>>>(output_ptr, input_ptr, dim_size); } do { const cudaError_t __err = cudaGetLastError(); c10::cuda::c10_cuda_check_implementation( static_cast<int32_t>(__err), "/workspace/pytorch/aten/src/ATen/native/cuda/SoftMax.cu", __func__, static_cast<uint32_t>(916), true); } while (0); } } }(); } case at::ScalarType::Float: { do { if constexpr (!at::should_include_kernel_dtype( at_dispatch_name, at::ScalarType::Float)) { do { ::c10::detail::deprecated_AT_ERROR(); if (!(false)) { ::c10::detail::torchCheckFail( __func__, "/workspace/pytorch/aten/src/ATen/native/cuda/SoftMax.cu", static_cast<uint32_t>(844), (::c10::detail::torchCheckMsgImpl( "Expected " "false" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", ::c10::str("dtype '", toString(at::ScalarType::Float), "' not selected for kernel tag ", at_dispatch_name)))); }; } while (false); } } while (0); using scalar_t __attribute__((__unused__)) = c10::impl::ScalarTypeToCPPTypeT<at::ScalarType::Float>; return [&] { using accscalar_t = acc_type<scalar_t, true>; if (!half_to_float) { auto output_ptr = output.mutable_data_ptr<scalar_t>(); auto input_ptr = input.const_data_ptr<scalar_t>(); if (dim_size <= 1024 && dim_size*sizeof(scalar_t) <= 4096) { int64_t remaining = outer_size; int64_t chunk_size = (1L << 30L) / dim_size; while(remaining > 0) { dispatch_softmax_forward<scalar_t, scalar_t, accscalar_t, is_log_softmax, false>( output_ptr, input_ptr, dim_size, dim_size, std::min<int64_t>(remaining, chunk_size), nullptr ); input_ptr += chunk_size * dim_size; output_ptr += chunk_size * dim_size; remaining -= chunk_size; } } else { constexpr int ILP = sizeof(float4) / sizeof(scalar_t); dim3 block = SoftMaxForward_getBlockSize(dim_size); size_t smem_reduction_sz = block.x / 32 * sizeof(accscalar_t); auto max_elements_per_smem = (at::cuda::getCurrentDeviceProperties()->sharedMemPerBlock - smem_reduction_sz) / sizeof(scalar_t); bool can_use_smem = dim_size < max_elements_per_smem; can_use_smem &= !(reinterpret_cast<const uintptr_t>(input_ptr) % ALIGN_BYTES); can_use_smem &= (!(reinterpret_cast<uintptr_t>(output_ptr) % ALIGN_BYTES)); can_use_smem &= !(dim_size % ILP); if (can_use_smem) { size_t smem_sz = dim_size * sizeof(scalar_t) + smem_reduction_sz; cunn_SoftMaxForwardSmem<ILP, scalar_t, accscalar_t, scalar_t, Epilogue> <<<grid, block, smem_sz, stream>>>(output_ptr, input_ptr, dim_size); } else { cunn_SoftMaxForward<ILP, scalar_t, accscalar_t, scalar_t, Epilogue> <<<grid, block, smem_reduction_sz, stream>>>(output_ptr, input_ptr, dim_size); } do { const cudaError_t __err = cudaGetLastError(); c10::cuda::c10_cuda_check_implementation( static_cast<int32_t>(__err), "/workspace/pytorch/aten/src/ATen/native/cuda/SoftMax.cu", __func__, static_cast<uint32_t>(880), true); } while (0); } } else { auto output_ptr = output.mutable_data_ptr<accscalar_t>(); auto input_ptr = input.const_data_ptr<scalar_t>(); if (dim_size <= 1024 && dim_size*sizeof(scalar_t) <= 4096) { int64_t remaining = outer_size; int64_t chunk_size = (1<<30) / dim_size; while(remaining > 0) { dispatch_softmax_forward<scalar_t, accscalar_t, accscalar_t, is_log_softmax, false>( output_ptr, input_ptr, dim_size, dim_size, std::min<int64_t>(remaining, chunk_size), nullptr ); input_ptr += chunk_size * dim_size; output_ptr += chunk_size * dim_size; remaining -= chunk_size; } } else { constexpr int ILP = sizeof(float4) / sizeof(scalar_t); dim3 block = SoftMaxForward_getBlockSize(dim_size); size_t smem_reduction_sz = block.x / 32 * sizeof(accscalar_t); auto max_elements_per_smem = (at::cuda::getCurrentDeviceProperties()->sharedMemPerBlock - smem_reduction_sz) / sizeof(scalar_t); bool can_use_smem = dim_size < max_elements_per_smem; can_use_smem &= !(reinterpret_cast<const uintptr_t>(input_ptr) % ALIGN_BYTES); can_use_smem &= (!(reinterpret_cast<uintptr_t>(output_ptr) % ALIGN_BYTES)); can_use_smem &= !(dim_size % ILP); if (can_use_smem) { size_t smem_sz = dim_size * sizeof(scalar_t) + smem_reduction_sz; cunn_SoftMaxForwardSmem<ILP, scalar_t, accscalar_t, accscalar_t, Epilogue> <<<grid, block, smem_sz, stream>>>(output_ptr, input_ptr, dim_size); } else { cunn_SoftMaxForward<ILP, scalar_t, accscalar_t, accscalar_t, Epilogue> <<<grid, block, smem_reduction_sz, stream>>>(output_ptr, input_ptr, dim_size); } do { const cudaError_t __err = cudaGetLastError(); c10::cuda::c10_cuda_check_implementation( static_cast<int32_t>(__err), "/workspace/pytorch/aten/src/ATen/native/cuda/SoftMax.cu", __func__, static_cast<uint32_t>(916), true); } while (0); } } }(); } case at::ScalarType::Half: { do { if constexpr (!at::should_include_kernel_dtype( at_dispatch_name, at::ScalarType::Half)) { do { ::c10::detail::deprecated_AT_ERROR(); if (!(false)) { ::c10::detail::torchCheckFail( __func__, "/workspace/pytorch/aten/src/ATen/native/cuda/SoftMax.cu", static_cast<uint32_t>(844), (::c10::detail::torchCheckMsgImpl( "Expected " "false" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", ::c10::str("dtype '", toString(at::ScalarType::Half), "' not selected for kernel tag ", at_dispatch_name)))); }; } while (false); } } while (0); using scalar_t __attribute__((__unused__)) = c10::impl::ScalarTypeToCPPTypeT<at::ScalarType::Half>; return [&] { using accscalar_t = acc_type<scalar_t, true>; if (!half_to_float) { auto output_ptr = output.mutable_data_ptr<scalar_t>(); auto input_ptr = input.const_data_ptr<scalar_t>(); if (dim_size <= 1024 && dim_size*sizeof(scalar_t) <= 4096) { int64_t remaining = outer_size; int64_t chunk_size = (1L << 30L) / dim_size; while(remaining > 0) { dispatch_softmax_forward<scalar_t, scalar_t, accscalar_t, is_log_softmax, false>( output_ptr, input_ptr, dim_size, dim_size, std::min<int64_t>(remaining, chunk_size), nullptr ); input_ptr += chunk_size * dim_size; output_ptr += chunk_size * dim_size; remaining -= chunk_size; } } else { constexpr int ILP = sizeof(float4) / sizeof(scalar_t); dim3 block = SoftMaxForward_getBlockSize(dim_size); size_t smem_reduction_sz = block.x / 32 * sizeof(accscalar_t); auto max_elements_per_smem = (at::cuda::getCurrentDeviceProperties()->sharedMemPerBlock - smem_reduction_sz) / sizeof(scalar_t); bool can_use_smem = dim_size < max_elements_per_smem; can_use_smem &= !(reinterpret_cast<const uintptr_t>(input_ptr) % ALIGN_BYTES); can_use_smem &= (!(reinterpret_cast<uintptr_t>(output_ptr) % ALIGN_BYTES)); can_use_smem &= !(dim_size % ILP); if (can_use_smem) { size_t smem_sz = dim_size * sizeof(scalar_t) + smem_reduction_sz; cunn_SoftMaxForwardSmem<ILP, scalar_t, accscalar_t, scalar_t, Epilogue> <<<grid, block, smem_sz, stream>>>(output_ptr, input_ptr, dim_size); } else { cunn_SoftMaxForward<ILP, scalar_t, accscalar_t, scalar_t, Epilogue> <<<grid, block, smem_reduction_sz, stream>>>(output_ptr, input_ptr, dim_size); } do { const cudaError_t __err = cudaGetLastError(); c10::cuda::c10_cuda_check_implementation( static_cast<int32_t>(__err), "/workspace/pytorch/aten/src/ATen/native/cuda/SoftMax.cu", __func__, static_cast<uint32_t>(880), true); } while (0); } } else { auto output_ptr = output.mutable_data_ptr<accscalar_t>(); auto input_ptr = input.const_data_ptr<scalar_t>(); if (dim_size <= 1024 && dim_size*sizeof(scalar_t) <= 4096) { int64_t remaining = outer_size; int64_t chunk_size = (1<<30) / dim_size; while(remaining > 0) { dispatch_softmax_forward<scalar_t, accscalar_t, accscalar_t, is_log_softmax, false>( output_ptr, input_ptr, dim_size, dim_size, std::min<int64_t>(remaining, chunk_size), nullptr ); input_ptr += chunk_size * dim_size; output_ptr += chunk_size * dim_size; remaining -= chunk_size; } } else { constexpr int ILP = sizeof(float4) / sizeof(scalar_t); dim3 block = SoftMaxForward_getBlockSize(dim_size); size_t smem_reduction_sz = block.x / 32 * sizeof(accscalar_t); auto max_elements_per_smem = (at::cuda::getCurrentDeviceProperties()->sharedMemPerBlock - smem_reduction_sz) / sizeof(scalar_t); bool can_use_smem = dim_size < max_elements_per_smem; can_use_smem &= !(reinterpret_cast<const uintptr_t>(input_ptr) % ALIGN_BYTES); can_use_smem &= (!(reinterpret_cast<uintptr_t>(output_ptr) % ALIGN_BYTES)); can_use_smem &= !(dim_size % ILP); if (can_use_smem) { size_t smem_sz = dim_size * sizeof(scalar_t) + smem_reduction_sz; cunn_SoftMaxForwardSmem<ILP, scalar_t, accscalar_t, accscalar_t, Epilogue> <<<grid, block, smem_sz, stream>>>(output_ptr, input_ptr, dim_size); } else { cunn_SoftMaxForward<ILP, scalar_t, accscalar_t, accscalar_t, Epilogue> <<<grid, block, smem_reduction_sz, stream>>>(output_ptr, input_ptr, dim_size); } do { const cudaError_t __err = cudaGetLastError(); c10::cuda::c10_cuda_check_implementation( static_cast<int32_t>(__err), "/workspace/pytorch/aten/src/ATen/native/cuda/SoftMax.cu", __func__, static_cast<uint32_t>(916), true); } while (0); } } }(); } case at::ScalarType::BFloat16: { do { if constexpr (!at::should_include_kernel_dtype( at_dispatch_name, at::ScalarType::BFloat16)) { do { ::c10::detail::deprecated_AT_ERROR(); if (!(false)) { ::c10::detail::torchCheckFail( __func__, "/workspace/pytorch/aten/src/ATen/native/cuda/SoftMax.cu", static_cast<uint32_t>(844), (::c10::detail::torchCheckMsgImpl( "Expected " "false" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", ::c10::str("dtype '", toString(at::ScalarType::BFloat16), "' not selected for kernel tag ", at_dispatch_name)))); }; } while (false); } } while (0); using scalar_t __attribute__((__unused__)) = c10::impl::ScalarTypeToCPPTypeT<at::ScalarType::BFloat16>; return [&] { using accscalar_t = acc_type<scalar_t, true>; if (!half_to_float) { auto output_ptr = output.mutable_data_ptr<scalar_t>(); auto input_ptr = input.const_data_ptr<scalar_t>(); if (dim_size <= 1024 && dim_size*sizeof(scalar_t) <= 4096) { int64_t remaining = outer_size; int64_t chunk_size = (1L << 30L) / dim_size; while(remaining > 0) { dispatch_softmax_forward<scalar_t, scalar_t, accscalar_t, is_log_softmax, false>( output_ptr, input_ptr, dim_size, dim_size, std::min<int64_t>(remaining, chunk_size), nullptr ); input_ptr += chunk_size * dim_size; output_ptr += chunk_size * dim_size; remaining -= chunk_size; } } else { constexpr int ILP = sizeof(float4) / sizeof(scalar_t); dim3 block = SoftMaxForward_getBlockSize(dim_size); size_t smem_reduction_sz = block.x / 32 * sizeof(accscalar_t); auto max_elements_per_smem = (at::cuda::getCurrentDeviceProperties()->sharedMemPerBlock - smem_reduction_sz) / sizeof(scalar_t); bool can_use_smem = dim_size < max_elements_per_smem; can_use_smem &= !(reinterpret_cast<const uintptr_t>(input_ptr) % ALIGN_BYTES); can_use_smem &= (!(reinterpret_cast<uintptr_t>(output_ptr) % ALIGN_BYTES)); can_use_smem &= !(dim_size % ILP); if (can_use_smem) { size_t smem_sz = dim_size * sizeof(scalar_t) + smem_reduction_sz; cunn_SoftMaxForwardSmem<ILP, scalar_t, accscalar_t, scalar_t, Epilogue> <<<grid, block, smem_sz, stream>>>(output_ptr, input_ptr, dim_size); } else { cunn_SoftMaxForward<ILP, scalar_t, accscalar_t, scalar_t, Epilogue> <<<grid, block, smem_reduction_sz, stream>>>(output_ptr, input_ptr, dim_size); } do { const cudaError_t __err = cudaGetLastError(); c10::cuda::c10_cuda_check_implementation( static_cast<int32_t>(__err), "/workspace/pytorch/aten/src/ATen/native/cuda/SoftMax.cu", __func__, static_cast<uint32_t>(880), true); } while (0); } } else { auto output_ptr = output.mutable_data_ptr<accscalar_t>(); auto input_ptr = input.const_data_ptr<scalar_t>(); if (dim_size <= 1024 && dim_size*sizeof(scalar_t) <= 4096) { int64_t remaining = outer_size; int64_t chunk_size = (1<<30) / dim_size; while(remaining > 0) { dispatch_softmax_forward<scalar_t, accscalar_t, accscalar_t, is_log_softmax, false>( output_ptr, input_ptr, dim_size, dim_size, std::min<int64_t>(remaining, chunk_size), nullptr ); input_ptr += chunk_size * dim_size; output_ptr += chunk_size * dim_size; remaining -= chunk_size; } } else { constexpr int ILP = sizeof(float4) / sizeof(scalar_t); dim3 block = SoftMaxForward_getBlockSize(dim_size); size_t smem_reduction_sz = block.x / 32 * sizeof(accscalar_t); auto max_elements_per_smem = (at::cuda::getCurrentDeviceProperties()->sharedMemPerBlock - smem_reduction_sz) / sizeof(scalar_t); bool can_use_smem = dim_size < max_elements_per_smem; can_use_smem &= !(reinterpret_cast<const uintptr_t>(input_ptr) % ALIGN_BYTES); can_use_smem &= (!(reinterpret_cast<uintptr_t>(output_ptr) % ALIGN_BYTES)); can_use_smem &= !(dim_size % ILP); if (can_use_smem) { size_t smem_sz = dim_size * sizeof(scalar_t) + smem_reduction_sz; cunn_SoftMaxForwardSmem<ILP, scalar_t, accscalar_t, accscalar_t, Epilogue> <<<grid, block, smem_sz, stream>>>(output_ptr, input_ptr, dim_size); } else { cunn_SoftMaxForward<ILP, scalar_t, accscalar_t, accscalar_t, Epilogue> <<<grid, block, smem_reduction_sz, stream>>>(output_ptr, input_ptr, dim_size); } do { const cudaError_t __err = cudaGetLastError(); c10::cuda::c10_cuda_check_implementation( static_cast<int32_t>(__err), "/workspace/pytorch/aten/src/ATen/native/cuda/SoftMax.cu", __func__, static_cast<uint32_t>(916), true); } while (0); } } }(); } default: do { ::c10::detail::deprecated_AT_ERROR(); if (!(false)) { ::c10::detail::torchCheckFail( __func__, "/workspace/pytorch/aten/src/ATen/native/cuda/SoftMax.cu", static_cast<uint32_t>(844), (::c10::detail::torchCheckMsgImpl( "Expected " "false" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", ::c10::str('"', at_dispatch_name, "\" not implemented for '", toString(_st), "'")))); }; } while (false); } }() ``` and ``` SoftMax.cu:844: warning: comparison of integer expressions of different signedness: ‘int64_t’ {aka ‘long int’} and ‘long unsigned int’ [-Wsign-compare] ``` Pull Request resolved: pytorch#128468 Approved by: https://github.com/valentinandrei
Avoids excessively spammy warnings such as
and
cc @ptrblck @msaroufim