-
Notifications
You must be signed in to change notification settings - Fork 26.3k
[CPUInductor] Fix out-of-bounds read/write in cvt_int64_to_[fp32|int32] #122511
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
Discovered while debugging regressions in enabling vectorization on ARM platform
🔗 Helpful Links🧪 See artifacts and rendered test results at hud.pytorch.org/pr/122511
Note: Links to docs will display an error until the docs builds have been completed. ✅ No FailuresAs of commit 78a6f6c with merge base 52e9049 ( This comment was automatically generated by Dr. CI and updates every 15 minutes. |
|
@pytorchbot merge |
Merge startedYour change will be merged once all checks pass (ETA 0-4 Hours). Learn more about merging in the wiki. Questions? Feedback? Please reach out to the PyTorch DevX Team |
This started as a re-land of #105590 but focusing on enabling it on MacOS, but quickly turned into landing very limited platform-specific acceleration at this time (I.e. this PR does not add any NEON accelerated code at all, just enables vectorized compilation for the existing abstractions) Enabling the test harness, uncovered number of latent issues in CPU inductor that were fixed in the following PRS: - #122511 - #122513 - #122580 - #122608 Following was added/changed to enable vectorization code to work on MacOS - Added VecNEON class to `_inductor/codecache.py` that is supported on all AppleSilicon Macs - Added `Vectorized::loadu_one_fourth` to `vec_base.h`, and limit it to 8-bit types - Change 64-bit integral types mapping to `int64_t`/`uint64_t` to align with the rest of the code, as on MacOS, `int64_t` is a `long long` rather than `long` (see #118149 for more details) See table below for perf changes with and without torch.compile using [gpt-fast](https://github.com/pytorch-labs/gpt-fast) running `stories15M` on M2 Pro: | dtype | Eager | Compile (before) | Compile (after) | | ------ | ------ | --------- | --------- | | bfloat16 | 120 tokens/sec | 130 tokens/sec | 156 tokens/sec | | float32 | 158 tokens/sec | 140 tokens/sec | 236 tokens/sec | | float16 | 235 tokens/sec | 81 tokens/sec | 58 tokens/sec | Pull Request resolved: #122217 Approved by: https://github.com/jansel
…2] (#122511) Discovered while debugging regressions in enabling vectorization on ARM platform Without this change `test_div2_cpu` will fail with invalid values on non-x86 CPU Pull Request resolved: #122511 Approved by: https://github.com/peterbell10, https://github.com/jansel
This started as a re-land of #105590 but focusing on enabling it on MacOS, but quickly turned into landing very limited platform-specific acceleration at this time (I.e. this PR does not add any NEON accelerated code at all, just enables vectorized compilation for the existing abstractions) Enabling the test harness, uncovered number of latent issues in CPU inductor that were fixed in the following PRS: - #122511 - #122513 - #122580 - #122608 Following was added/changed to enable vectorization code to work on MacOS - Added VecNEON class to `_inductor/codecache.py` that is supported on all AppleSilicon Macs - Added `Vectorized::loadu_one_fourth` to `vec_base.h`, and limit it to 8-bit types - Change 64-bit integral types mapping to `int64_t`/`uint64_t` to align with the rest of the code, as on MacOS, `int64_t` is a `long long` rather than `long` (see #118149 for more details) See table below for perf changes with and without torch.compile using [gpt-fast](https://github.com/pytorch-labs/gpt-fast) running `stories15M` on M2 Pro: | dtype | Eager | Compile (before) | Compile (after) | | ------ | ------ | --------- | --------- | | bfloat16 | 120 tokens/sec | 130 tokens/sec | 156 tokens/sec | | float32 | 158 tokens/sec | 140 tokens/sec | 236 tokens/sec | | float16 | 235 tokens/sec | 81 tokens/sec | 58 tokens/sec | Pull Request resolved: #122217 Approved by: https://github.com/jansel
Discovered while debugging regressions in enabling vectorization on ARM platform
Without this change
test_div2_cpuwill fail with invalid values on non-x86 CPUcc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @peterbell10 @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @aakhundov @ColinPeppler @amjames @desertfire @chauhang