Skip to content

masked_scatter should only accept bool tensors as mask #94634

@cafffeeee

Description

@cafffeeee

🐛 Describe the bug

masked_scatter fails the backward gradient computation due to some strange error that RuntimeError: masked_select: expected BoolTensor or ByteTensor for mask. But it will not raise such error in the forward computation for the tensors requiring grad. Not sure which phase is buggy, but at least they should be consistent

import torch
from torch.autograd.functional import jacobian
from torch.func import jacrev, jacfwd

torch.manual_seed(420)

input_tensor = torch.ones(1, 3)
mask = torch.ones(1, 3)
tensor = torch.ones(3, 4)

def func(input_tensor, mask, tensor):
    output_tensor = torch.masked_scatter(input_tensor, mask, tensor)
    return output_tensor

func(input_tensor, mask, tensor)
# succeed

func(input_tensor.clone().requires_grad_(), mask.clone().requires_grad_(), tensor.clone().requires_grad_())
# succeed

jacobian(func, (input_tensor, mask, tensor), vectorize=True, strategy="reverse-mode")
# RuntimeError: masked_select: expected BoolTensor or ByteTensor for mask

jacrev(func)(input_tensor, mask, tensor)
# RuntimeError: masked_select: expected BoolTensor or ByteTensor for mask

Versions

PyTorch version: 2.0.0.dev20230105
Is debug build: False
CUDA used to build PyTorch: 11.7
ROCM used to build PyTorch: N/A

OS: Ubuntu 22.04.1 LTS (x86_64)
GCC version: (Ubuntu 11.3.0-1ubuntu1~22.04) 11.3.0
Clang version: Could not collect
CMake version: version 3.22.1
Libc version: glibc-2.35

Python version: 3.9.15 (main, Nov 24 2022, 14:31:59)  [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.15.0-56-generic-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 11.7.99
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA GeForce RTX 3090
GPU 1: NVIDIA GeForce RTX 3090
GPU 2: NVIDIA GeForce RTX 3090

Nvidia driver version: 515.86.01
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.8.4.1
/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.4.1
/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.4.1
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.4.1
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.4.1
/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.4.1
/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.4.1
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

Versions of relevant libraries:
[pip3] numpy==1.23.5
[pip3] torch==2.0.0.dev20230105
[pip3] torchaudio==2.0.0.dev20230105
[pip3] torchvision==0.15.0.dev20230105
[conda] blas                      1.0                         mkl
[conda] mkl                       2021.4.0           h06a4308_640
[conda] mkl-service               2.4.0            py39h7f8727e_0
[conda] mkl_fft                   1.3.1            py39hd3c417c_0
[conda] mkl_random                1.2.2            py39h51133e4_0
[conda] numpy                     1.23.5           py39h14f4228_0
[conda] numpy-base                1.23.5           py39h31eccc5_0
[conda] pytorch                   2.0.0.dev20230105 py3.9_cuda11.7_cudnn8.5.0_0    pytorch-nightly
[conda] pytorch-cuda              11.7                 h67b0de4_2    pytorch-nightly
[conda] pytorch-mutex             1.0                        cuda    pytorch-nightly
[conda] torchaudio                2.0.0.dev20230105      py39_cu117    pytorch-nightly
[conda] torchtriton               2.0.0+0d7e753227            py39    pytorch-nightly
[conda] torchvision               0.15.0.dev20230105      py39_cu117    pytorch-nightly

cc @malfet @ezyang @gchanan

Metadata

Metadata

Assignees

Labels

good first issuemodule: correctness (silent)issue that returns an incorrect result silentlymodule: error checkingBugs related to incorrect/lacking error checkingtriagedThis issue has been looked at a team member, and triaged and prioritized into an appropriate module

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions