-
Notifications
You must be signed in to change notification settings - Fork 26.3k
Description
🐛 Bug
I am following the new memory_format tutorial:
https://pytorch.org/tutorials/intermediate/memory_format_tutorial.html
When running it on a custom convolutional network, I get:
`conv2d` got channels_last input, but output is not channels_last: torch.Size([8, 32, 256, 512]) (4194304, 131072, 512, 1) cuda:0 torch.float32
`conv2d` inputs are:
(4194304, 1, 16384, 32) torch.Size([8, 32, 256, 512]) cuda:0 torch.float32
(25, 1, 5, 1) torch.Size([32, 1, 5, 5]) cuda:0 torch.float32
None
<class 'tuple'>
1
1
<class 'tuple'>
4
4
<class 'tuple'>
2
2
32
despite conv2d being said to support channels_last property.
To Reproduce
Steps to reproduce the behavior:
- Follow the memory_format tutorial on a convolutional model containing ???
- ???
Expected behavior
The conv2d should keep the channels_last property
Environment
PyTorch version: 1.5.0+cu101
Is debug build: No
CUDA used to build PyTorch: 10.1
OS: CentOS Linux 7 (Core)
GCC version: (GCC) 8.3.0
CMake version: Could not collect
Python version: 3.6
Is CUDA available: Yes
CUDA runtime version: 10.1.243
GPU models and configuration: GPU 0: Tesla V100-SXM2-32GB
Nvidia driver version: 418.67
cuDNN version: Could not collect
Versions of relevant libraries:
[pip3] numpy==1.18.2
[pip3] pytorch-lightning==0.7.4
[pip3] torch==1.5.0+cu101
[pip3] torchvision==0.6.0+cu101