Skip to content

[inducotr] [cuda] frexp output different result when meeting inf #143790

@shaoyuyoung

Description

@shaoyuyoung

🐛 Describe the bug

symptom: When input tensor is inf, the second tensor returned by frexp is -2147483648. Eager output is zero (CPU inductor is also zero)

device: only cuda

exposed area: only input tensor is inf (nan wouldn't trigger inconsistency)

code

import torch
import torch.nn as nn
import torch.nn.functional as F

torch.manual_seed(0)
torch.set_grad_enabled(False)
from torch._inductor import config

config.fallback_random = True


class Model(torch.nn.Module):

    def __init__(self):
        super(Model, self).__init__()

    def forward(self, x):
        a, b = torch.frexp(x)
        return b


model = Model().cuda()

x = torch.Tensor([float("inf")]).cuda()

inputs = [x]

output = model(*inputs)

c_model = torch.compile(model)
c_output = c_model(*inputs)
print(output)
print(c_output)

Error logs

tensor([0], device='cuda:0', dtype=torch.int32)
tensor([-2147483648], device='cuda:0', dtype=torch.int32)

Versions

PyTorch version: 2.6.0.dev20241218+cu126
OS: Ubuntu 20.04.6 LTS (x86_64)
CPU: Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz
GPU: V100

click for detailed env
PyTorch version: 2.6.0.dev20241218+cu126
Is debug build: False
CUDA used to build PyTorch: 12.6
ROCM used to build PyTorch: N/A

OS: Ubuntu 20.04.6 LTS (x86_64)
GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0
Clang version: 16.0.1
CMake version: version 3.26.0
Libc version: glibc-2.31

Python version: 3.12.7 | packaged by Anaconda, Inc. | (main, Oct  4 2024, 13:27:36) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.4.0-202-generic-x86_64-with-glibc2.31
Is CUDA available: True
CUDA runtime version: 12.6.68
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: 
GPU 0: Tesla V100-SXM2-32GB
GPU 1: Tesla V100-SXM2-32GB
GPU 2: Tesla V100-SXM2-32GB
GPU 3: Tesla V100-SXM2-32GB

Nvidia driver version: 560.35.03
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.9.6.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.6.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.6.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.6.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.6.0
/usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.6.0
/usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.6.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.6.0
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                       x86_64
CPU op-mode(s):                     32-bit, 64-bit
Byte Order:                         Little Endian
Address sizes:                      40 bits physical, 48 bits virtual
CPU(s):                             20
On-line CPU(s) list:                0-19
Thread(s) per core:                 1
Core(s) per socket:                 20
Socket(s):                          1
NUMA node(s):                       1
Vendor ID:                          GenuineIntel
CPU family:                         6
Model:                              85
Model name:                         Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz
Stepping:                           7
CPU MHz:                            2499.996
BogoMIPS:                           4999.99
Hypervisor vendor:                  KVM
Virtualization type:                full
L1d cache:                          640 KiB
L1i cache:                          640 KiB
L2 cache:                           80 MiB
L3 cache:                           16 MiB
NUMA node0 CPU(s):                  0-19
Vulnerability Gather data sampling: Unknown: Dependent on hypervisor status
Vulnerability Itlb multihit:        KVM: Vulnerable
Vulnerability L1tf:                 Mitigation; PTE Inversion
Vulnerability Mds:                  Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Vulnerability Meltdown:             Mitigation; PTI
Vulnerability Mmio stale data:      Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Vulnerability Retbleed:             Mitigation; IBRS
Vulnerability Spec store bypass:    Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:           Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:           Mitigation; IBRS; IBPB conditional; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI SW loop, KVM SW loop
Vulnerability Srbds:                Not affected
Vulnerability Tsx async abort:      Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Flags:                              fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon rep_good nopl xtopology cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch topoext cpuid_fault invpcid_single pti ssbd ibrs ibpb fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat umip pku ospke avx512_vnni

Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.6.4.1
[pip3] nvidia-cuda-cupti-cu12==12.6.80
[pip3] nvidia-cuda-nvrtc-cu12==12.6.77
[pip3] nvidia-cuda-runtime-cu12==12.6.77
[pip3] nvidia-cudnn-cu12==9.5.1.17
[pip3] nvidia-cufft-cu12==11.3.0.4
[pip3] nvidia-curand-cu12==10.3.7.77
[pip3] nvidia-cusolver-cu12==11.7.1.2
[pip3] nvidia-cusparse-cu12==12.5.4.2
[pip3] nvidia-cusparselt-cu12==0.6.3
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.6.85
[pip3] nvidia-nvtx-cu12==12.6.77
[pip3] onnx==1.17.0
[pip3] onnxruntime==1.20.1
[pip3] onnxscript==0.1.0.dev20241205
[pip3] optree==0.13.1
[pip3] pytorch-triton==3.2.0+gitf9cdf582
[pip3] torch==2.6.0.dev20241218+cu126
[pip3] torchaudio==2.6.0.dev20241218+cu126
[pip3] torchvision==0.22.0.dev20241218+cu126
[pip3] triton==3.0.0
[conda] numpy                     1.26.4                   pypi_0    pypi
[conda] nvidia-cublas-cu12        12.6.4.1                 pypi_0    pypi
[conda] nvidia-cuda-cupti-cu12    12.6.80                  pypi_0    pypi
[conda] nvidia-cuda-nvrtc-cu12    12.6.77                  pypi_0    pypi
[conda] nvidia-cuda-runtime-cu12  12.6.77                  pypi_0    pypi
[conda] nvidia-cudnn-cu12         9.5.1.17                 pypi_0    pypi
[conda] nvidia-cufft-cu12         11.3.0.4                 pypi_0    pypi
[conda] nvidia-curand-cu12        10.3.7.77                pypi_0    pypi
[conda] nvidia-cusolver-cu12      11.7.1.2                 pypi_0    pypi
[conda] nvidia-cusparse-cu12      12.5.4.2                 pypi_0    pypi
[conda] nvidia-cusparselt-cu12    0.6.3                    pypi_0    pypi
[conda] nvidia-nccl-cu12          2.21.5                   pypi_0    pypi
[conda] nvidia-nvjitlink-cu12     12.6.85                  pypi_0    pypi
[conda] nvidia-nvtx-cu12          12.6.77                  pypi_0    pypi
[conda] optree                    0.13.1                   pypi_0    pypi
[conda] pytorch-triton            3.2.0+gitf9cdf582          pypi_0    pypi
[conda] torch                     2.6.0.dev20241218+cu126          pypi_0    pypi
[conda] torchaudio                2.6.0.dev20241218+cu126          pypi_0    pypi
[conda] torchvision               0.22.0.dev20241218+cu126          pypi_0    pypi
[conda] triton                    3.0.0                    pypi_0    pypi

cc @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @aakhundov @bertmaher @int3 @davidberard98 @nmacchioni @embg @peterbell10

Metadata

Metadata

Assignees

No one assigned

    Labels

    module: inductoroncall: pt2triagedThis issue has been looked at a team member, and triaged and prioritized into an appropriate moduleupstream tritonUpstream Triton Issue

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions