Skip to content

[Inductor] [CPU] config.fallback_random = True has a negative effect for nn.Dropout1d, nn.Dropout2d, and nn.Dropout3d on CPU #142853

@shaoyuyoung

Description

@shaoyuyoung

🐛 Describe the bug

It's very strange if I want to ensure a stable output for RNG op (nn.Dropout1d, nn.Dropout2d, and nn.Dropout3d).

How to set config.fallback_random has the opposite effect on CPU and CUDA.

I guess there may be a place in the source code where the Boolean condition is written incorrectly.

Feel free to correct me if I am wrong (because maybe it was set that way on purpose?)

import torch
import torch.nn as nn
import torch.nn.functional as F

from torch._inductor import config

config.fallback_random = True  # here is the trigger condition


class Model(nn.Module):

    def __init__(self, dim):
        super().__init__()
        self.dropout = eval(f"nn.Dropout{dim}d(p=0.5)")

    def forward(self, x):
        torch.manual_seed(0)
        x = self.dropout(x)
        return x


def run_test(dim, device):
    torch.manual_seed(0)
    shape = [1, 3] + [256] * dim
    inputs = torch.randn(*shape).to(device)

    model = Model(dim).to(device)
    output = model(inputs)
    c_model = torch.compile(model)
    c_output = c_model(inputs)

    print(torch.allclose(output, c_output, 1.3e-6, 1e-5))
    print(torch.max(torch.abs(output - c_output)))


run_test(dim=1, device='cpu')
run_test(dim=2, device='cpu')
run_test(dim=3, device='cpu')
run_test(dim=1, device='cuda')
run_test(dim=2, device='cuda')
run_test(dim=3, device='cuda')

Error logs

config.fallback_random = True

False
tensor(6.7888)
False
tensor(9.3165)
False
tensor(10.3027)
True
tensor(0., device='cuda:0')
True
tensor(0., device='cuda:0')
True
tensor(0., device='cuda:0')

config.fallback_random = False

True
tensor(0.)
True
tensor(0.)
True
tensor(0.)
False
tensor(8.2030, device='cuda:0')
False
tensor(8.8358, device='cuda:0')
False
tensor(11.1416, device='cuda:0')

Versions

torch version: 2.6.0.dev20241205+cu124
OS: Ubuntu 20.04.6 LTS (x86_64)
CPU: Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz
GPU: V100

click for detailed env
PyTorch version: 2.6.0.dev20241205+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A

OS: Ubuntu 20.04.6 LTS (x86_64)
GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0
Clang version: 16.0.1
CMake version: version 3.26.0
Libc version: glibc-2.31

Python version: 3.12.7 | packaged by Anaconda, Inc. | (main, Oct  4 2024, 13:27:36) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.4.0-200-generic-x86_64-with-glibc2.31
Is CUDA available: True
CUDA runtime version: 12.6.68
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: 
GPU 0: Tesla V100-SXM2-32GB
GPU 1: Tesla V100-SXM2-32GB
GPU 2: Tesla V100-SXM2-32GB
GPU 3: Tesla V100-SXM2-32GB

Nvidia driver version: 560.35.03
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.9.6.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.6.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.6.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.6.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.6.0
/usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.6.0
/usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.6.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.6.0
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                       x86_64
CPU op-mode(s):                     32-bit, 64-bit
Byte Order:                         Little Endian
Address sizes:                      40 bits physical, 48 bits virtual
CPU(s):                             20
On-line CPU(s) list:                0-19
Thread(s) per core:                 1
Core(s) per socket:                 20
Socket(s):                          1
NUMA node(s):                       1
Vendor ID:                          GenuineIntel
CPU family:                         6
Model:                              85
Model name:                         Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz
Stepping:                           7
CPU MHz:                            2500.000
BogoMIPS:                           5000.00
Hypervisor vendor:                  KVM
Virtualization type:                full
L1d cache:                          640 KiB
L1i cache:                          640 KiB
L2 cache:                           80 MiB
L3 cache:                           16 MiB
NUMA node0 CPU(s):                  0-19
Vulnerability Gather data sampling: Unknown: Dependent on hypervisor status
Vulnerability Itlb multihit:        KVM: Vulnerable
Vulnerability L1tf:                 Mitigation; PTE Inversion
Vulnerability Mds:                  Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Vulnerability Meltdown:             Mitigation; PTI
Vulnerability Mmio stale data:      Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Vulnerability Retbleed:             Mitigation; IBRS
Vulnerability Spec store bypass:    Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:           Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:           Mitigation; IBRS; IBPB conditional; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI SW loop, KVM SW loop
Vulnerability Srbds:                Not affected
Vulnerability Tsx async abort:      Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Flags:                              fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon rep_good nopl xtopology cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch topoext cpuid_fault invpcid_single pti ssbd ibrs ibpb fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat umip pku ospke avx512_vnni

Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-cusparselt-cu12==0.6.2
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] optree==0.13.1
[pip3] pytorch-triton==3.2.0+git35c6c7c6
[pip3] torch==2.6.0.dev20241205+cu124
[pip3] torchaudio==2.5.0.dev20241205+cu124
[pip3] torchvision==0.20.0.dev20241205+cu124
[pip3] triton==3.0.0
[conda] numpy                     1.26.4                   pypi_0    pypi
[conda] nvidia-cublas-cu12        12.4.5.8                 pypi_0    pypi
[conda] nvidia-cuda-cupti-cu12    12.4.127                 pypi_0    pypi
[conda] nvidia-cuda-nvrtc-cu12    12.4.127                 pypi_0    pypi
[conda] nvidia-cuda-runtime-cu12  12.4.127                 pypi_0    pypi
[conda] nvidia-cudnn-cu12         9.1.0.70                 pypi_0    pypi
[conda] nvidia-cufft-cu12         11.2.1.3                 pypi_0    pypi
[conda] nvidia-curand-cu12        10.3.5.147               pypi_0    pypi
[conda] nvidia-cusolver-cu12      11.6.1.9                 pypi_0    pypi
[conda] nvidia-cusparse-cu12      12.3.1.170               pypi_0    pypi
[conda] nvidia-cusparselt-cu12    0.6.2                    pypi_0    pypi
[conda] nvidia-nccl-cu12          2.21.5                   pypi_0    pypi
[conda] nvidia-nvjitlink-cu12     12.4.127                 pypi_0    pypi
[conda] nvidia-nvtx-cu12          12.4.127                 pypi_0    pypi
[conda] optree                    0.13.1                   pypi_0    pypi
[conda] pytorch-triton            3.2.0+git35c6c7c6          pypi_0    pypi
[conda] torch                     2.6.0.dev20241205+cu124          pypi_0    pypi
[conda] torchaudio                2.5.0.dev20241205+cu124          pypi_0    pypi
[conda] torchvision               0.20.0.dev20241205+cu124          pypi_0    pypi
[conda] triton                    3.0.0                    pypi_0    pypi

cc @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @aakhundov

Metadata

Metadata

Assignees

Labels

module: inductoroncall: cpu inductorCPU Inductor issues for Intel team to triageoncall: pt2triagedThis issue has been looked at a team member, and triaged and prioritized into an appropriate module

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions