-
Notifications
You must be signed in to change notification settings - Fork 26.5k
Description
🐛 Describe the bug
If I use Inductor to compile Conv2d and BN2d not use eval mode. The results are inconsistent.
The problem seems to be with BN2d
import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
self.conv = nn.Conv2d(3, 16, kernel_size=3, padding=2, dilation=2, groups=1)
self.bn = nn.BatchNorm2d(16)
self.global_avg_pool = nn.AdaptiveAvgPool2d((1, 1))
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
x = self.global_avg_pool(x)
return x
m = Model()
x = torch.randn(1, 3, 128, 128) # With the increase of height and width, the error becomes more obvious
output = m(x)
compiled_model = torch.compile(m)
c_output = compiled_model(x)
print(output)
print(c_output)
res = torch.allclose(output, c_output)
print(res)click here to see the err log
tensor([[[[-8.6147e-09]],
[[ 9.8953e-10]],
[[-3.4925e-10]],
[[ 4.0745e-09]],
[[-3.9581e-09]],
[[-1.3970e-09]],
[[ 1.2107e-08]],
[[ 4.6566e-10]],
[[-2.2119e-09]],
[[ 5.5879e-09]],
[[ 9.5170e-09]],
[[-6.9849e-10]],
[[ 1.1525e-08]],
[[-1.6298e-09]],
[[-2.1537e-09]],
[[ 5.1223e-09]]]], grad_fn=<MeanBackward1>)
tensor([[[[ 2.1268e-08]],
[[ 5.0095e-08]],
[[ 4.3936e-08]],
[[-1.0681e-07]],
[[-5.3694e-07]],
[[-1.0622e-07]],
[[-1.0726e-06]],
[[-9.5417e-08]],
[[ 4.2513e-07]],
[[-8.6298e-08]],
[[ 2.0579e-07]],
[[ 2.8708e-08]],
[[ 1.4902e-07]],
[[-5.8193e-08]],
[[-1.7331e-07]],
[[-2.9289e-08]]]], grad_fn=<CompiledFunctionBackward>)
False
If there is a problem with my use, feel free to let me know :)
Versions
click here to view the version env
Collecting environment information... PyTorch version: 2.6.0.dev20241115+cu124 Is debug build: False CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/AOS: Ubuntu 20.04.6 LTS (x86_64)
GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0
Clang version: 16.0.1
CMake version: version 3.26.0
Libc version: glibc-2.31
Python version: 3.12.7 | packaged by Anaconda, Inc. | (main, Oct 4 2024, 13:27:36) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.4.0-200-generic-x86_64-with-glibc2.31
Is CUDA available: True
CUDA runtime version: 12.6.68
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: Tesla V100-SXM2-32GB
GPU 1: Tesla V100-SXM2-32GB
GPU 2: Tesla V100-SXM2-32GB
GPU 3: Tesla V100-SXM2-32GB
Nvidia driver version: 560.35.03
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.9.4.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.4.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.4.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.4.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.4.0
/usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.4.0
/usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.4.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.4.0
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
Address sizes: 40 bits physical, 48 bits virtual
CPU(s): 20
On-line CPU(s) list: 0-19
Thread(s) per core: 1
Core(s) per socket: 20
Socket(s): 1
NUMA node(s): 1
Vendor ID: GenuineIntel
CPU family: 6
Model: 85
Model name: Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz
Stepping: 7
CPU MHz: 2499.994
BogoMIPS: 4999.98
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 640 KiB
L1i cache: 640 KiB
L2 cache: 80 MiB
L3 cache: 16 MiB
NUMA node0 CPU(s): 0-19
Vulnerability Gather data sampling: Unknown: Dependent on hypervisor status
Vulnerability Itlb multihit: KVM: Vulnerable
Vulnerability L1tf: Mitigation; PTE Inversion
Vulnerability Mds: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Vulnerability Meltdown: Mitigation; PTI
Vulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Vulnerability Retbleed: Mitigation; IBRS
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; IBRS; IBPB conditional; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI SW loop, KVM SW loop
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon rep_good nopl xtopology cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch topoext cpuid_fault invpcid_single pti ssbd ibrs ibpb fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat umip pku ospke avx512_vnni
Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-cusparselt-cu12==0.6.2
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] optree==0.13.1
[pip3] pytorch-triton==3.1.0+cf34004b8a
[pip3] torch==2.6.0.dev20241115+cu124
[pip3] torchaudio==2.5.0.dev20241115+cu124
[pip3] torchvision==0.20.0.dev20241115+cu124
[pip3] triton==3.0.0
[conda] numpy 1.26.4 pypi_0 pypi
[conda] nvidia-cublas-cu12 12.4.5.8 pypi_0 pypi
[conda] nvidia-cuda-cupti-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-cuda-nvrtc-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-cuda-runtime-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-cudnn-cu12 9.1.0.70 pypi_0 pypi
[conda] nvidia-cufft-cu12 11.2.1.3 pypi_0 pypi
[conda] nvidia-curand-cu12 10.3.5.147 pypi_0 pypi
[conda] nvidia-cusolver-cu12 11.6.1.9 pypi_0 pypi
[conda] nvidia-cusparse-cu12 12.3.1.170 pypi_0 pypi
[conda] nvidia-cusparselt-cu12 0.6.2 pypi_0 pypi
[conda] nvidia-nccl-cu12 2.21.5 pypi_0 pypi
[conda] nvidia-nvjitlink-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-nvtx-cu12 12.4.127 pypi_0 pypi
[conda] optree 0.13.1 pypi_0 pypi
[conda] pytorch-triton 3.1.0+cf34004b8a pypi_0 pypi
[conda] torch 2.6.0.dev20241115+cu124 pypi_0 pypi
[conda] torchaudio 2.5.0.dev20241115+cu124 pypi_0 pypi
[conda] torchvision 0.20.0.dev20241115+cu124 pypi_0 pypi
[conda] triton 3.0.0 pypi_0 pypi
cc @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @aakhundov