Skip to content

torch.squeeze does not accept dim=NoneΒ #137422

@randolf-scholz

Description

@randolf-scholz

πŸ› Describe the bug

import torch
x = torch.randn(3, 1, 2)
x.squeeze(dim=None)  # ❌ RuntimeError
torch.squeeze(x, dim=None)  # ❌ RuntimeError

The documentation clearly states that this is supported.

Also, most other methods like Tensor.mean, Tensor.argmax, etc. support passing None.

To avoid such accidental inconsistencies in the API, it may be useful to verify tensor method signatures using a type checker, for example by adding a static test along the lines of:

from typing import Any, Protocol
from torch import Tensor


class TensorMethodWithDim(Protocol):
    """Callback Protocol for tensor methods supporting `dim` argument.

    NOTE: Adding `*args: Any` and `**kwargs: Any` means we are specifying
      a partial signature for the method.
      see: https://typing.readthedocs.io/en/latest/spec/callables.html#meaning-of-in-callable
    """

    def __call__(
        _,
        self: Tensor,
        dim: None | int,
        *args: Any,
        **kwargs: Any,
    ) -> Tensor: ...


METHODS_WITH_DIM: list[TensorMethodWithDim] = [
    Tensor.mean,     # mypy βœ…
    Tensor.sum,      # mypy βœ…
    Tensor.std,      # mypy βœ…
    Tensor.var,      # mypy βœ…
    Tensor.squeeze,  # mypy ❌: List item 4 has incompatible type overloaded function
    Tensor.argmax,   # mypy βœ…
    Tensor.argmin,   # mypy βœ…
]

Versions

Details

Collecting environment information...
PyTorch version: 2.6.0a0+gite80f47f
Is debug build: False
CUDA used to build PyTorch: N/A
ROCM used to build PyTorch: 6.1.40093-bd86f1708

OS: Ubuntu 22.04.5 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: 14.0.0-1ubuntu1.1
CMake version: version 3.22.1
Libc version: glibc-2.35

Python version: 3.10.14 (main, Jun 30 2024, 13:00:40) [GCC 11.4.0] (64-bit runtime)
Python platform: Linux-6.8.0-45-generic-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.6.77
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: NVIDIA GeForce RTX 3090 (NVIDIA GeForce RTX 3090)
Nvidia driver version: 560.35.03
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.7
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 43 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 24
On-line CPU(s) list: 0-23
Vendor ID: AuthenticAMD
Model name: AMD Ryzen 9 3900X 12-Core Processor
CPU family: 23
Model: 113
Thread(s) per core: 2
Core(s) per socket: 12
Socket(s): 1
Stepping: 0
Frequency boost: enabled
CPU max MHz: 4672,0698
CPU min MHz: 2200,0000
BogoMIPS: 7600.18
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl umip rdpid overflow_recov succor smca sev sev_es
Virtualization: AMD-V
L1d cache: 384 KiB (12 instances)
L1i cache: 384 KiB (12 instances)
L2 cache: 6 MiB (12 instances)
L3 cache: 64 MiB (4 instances)
NUMA node(s): 1
NUMA node0 CPU(s): 0-23
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Mitigation; untrained return thunk; SMT enabled with STIBP protection
Vulnerability Spec rstack overflow: Mitigation; Safe RET
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Retpolines; IBPB conditional; STIBP always-on; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected

Versions of relevant libraries:
[pip3] flake8==6.1.0
[pip3] flake8-bugbear==23.3.23
[pip3] flake8-comprehensions==3.15.0
[pip3] flake8-executable==2.1.3
[pip3] flake8-logging-format==0.9.0
[pip3] flake8-pyi==23.3.1
[pip3] flake8-simplify==0.19.3
[pip3] mypy==1.11.2
[pip3] mypy-extensions==1.0.0
[pip3] numpy==1.26.0
[pip3] optree==0.12.1
[pip3] torch==2.6.0a0+gite80f47f
[conda] Could not collect

cc @albanD

Metadata

Metadata

Assignees

No one assigned

    Labels

    actionablemodule: python frontendFor issues relating to PyTorch's Python frontendtopic: docstopic categorytriagedThis issue has been looked at a team member, and triaged and prioritized into an appropriate module

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions