-
Notifications
You must be signed in to change notification settings - Fork 26.5k
Description
🐛 Describe the bug
When I use torch.compile() to compile a model like below, the output is random tensor but actually they should be zero.
I made some ablations which are write in the comment
Error logs
click here to view the error log
----------original model----------
tensor([[0., 0., 0., 0.],
[0., 0., 0., 0.]])
----------compiled model----------
tensor([[10.7629, 9.2306, 10.7629, 9.2306],
[ 6.0779, 6.1903, 6.0779, 6.1903]])
Minified repro
import torch
class Model(torch.nn.Module):
def forward(self, x):
s1 = torch.addmm(x, x, x, beta=0.0, alpha=0.0)
s2 = torch.addmm(x, x, x, beta=0.0, alpha=0.0)
return torch.cat((s1, s2), -1) # If dim=0, the res is OK!
x = torch.randn(2, 2)
test_inputs = [x]
func = Model().to('cuda') # If I use CPU, the result is same
compiled_func = torch.compile(func, backend="inductor") # backend="cudagraphs" is OK
print("-" * 10 + "original model" + "-" * 10)
print(func(*test_inputs))
print("-" * 10 + "compiled model" + "-" * 10)
print(compiled_func(*test_inputs))Versions
click here to view the version env
Collecting environment information... PyTorch version: 2.4.0+cu121 Is debug build: False CUDA used to build PyTorch: 12.1 ROCM used to build PyTorch: N/AOS: Ubuntu 20.04.6 LTS (x86_64)
GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0
Clang version: 16.0.1
CMake version: version 3.26.0
Libc version: glibc-2.31
Python version: 3.11.9 (main, Apr 19 2024, 16:48:06) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.4.0-196-generic-x86_64-with-glibc2.31
Is CUDA available: True
CUDA runtime version: 12.6.68
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: Tesla V100-SXM2-32GB
GPU 1: Tesla V100-SXM2-32GB
GPU 2: Tesla V100-SXM2-32GB
GPU 3: Tesla V100-SXM2-32GB
Nvidia driver version: 560.35.03
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.9.4.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.4.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.4.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.4.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.4.0
/usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.4.0
/usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.4.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.4.0
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
Address sizes: 40 bits physical, 48 bits virtual
CPU(s): 20
On-line CPU(s) list: 0-19
Thread(s) per core: 1
Core(s) per socket: 20
Socket(s): 1
NUMA node(s): 1
Vendor ID: GenuineIntel
CPU family: 6
Model: 85
Model name: Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz
Stepping: 7
CPU MHz: 2499.998
BogoMIPS: 4999.99
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 640 KiB
L1i cache: 640 KiB
L2 cache: 80 MiB
L3 cache: 16 MiB
NUMA node0 CPU(s): 0-19
Vulnerability Gather data sampling: Unknown: Dependent on hypervisor status
Vulnerability Itlb multihit: KVM: Vulnerable
Vulnerability L1tf: Mitigation; PTE Inversion
Vulnerability Mds: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Vulnerability Meltdown: Mitigation; PTI
Vulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Vulnerability Retbleed: Mitigation; IBRS
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; IBRS; IBPB conditional; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI SW loop, KVM SW loop
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon rep_good nopl xtopology cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch topoext cpuid_fault invpcid_single pti ssbd ibrs ibpb fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat umip pku ospke avx512_vnni
Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] optree==0.12.1
[pip3] torch==2.4.0
[pip3] torchvision==0.19.0
[pip3] triton==3.0.0
[conda] numpy 1.26.4 pypi_0 pypi
[conda] optree 0.12.1 pypi_0 pypi
[conda] torch 2.4.0 pypi_0 pypi
[conda] torchvision 0.19.0 pypi_0 pypi
[conda] triton 3.0.0 pypi_0 pypi
cc @ezyang @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire